The almost Einstein operator for distributions
Katja Sagerschnig; Travis Willse
Archivum Mathematicum (2017)
- Volume: 053, Issue: 5, page 347-370
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSagerschnig, Katja, and Willse, Travis. "The almost Einstein operator for $(2, 3, 5)$ distributions." Archivum Mathematicum 053.5 (2017): 347-370. <http://eudml.org/doc/294548>.
@article{Sagerschnig2017,
abstract = {For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname\{G\}_2, P)$ for a particular parabolic subgroup $P < \operatorname\{G\}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta _0$ associated to the $7$-dimensional irreducible representation of $\operatorname\{G\}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta _0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf \{D\}$ determines. We apply our formula for $\Theta _0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname\{G\}_2$.},
author = {Sagerschnig, Katja, Willse, Travis},
journal = {Archivum Mathematicum},
keywords = {$(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators},
language = {eng},
number = {5},
pages = {347-370},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The almost Einstein operator for $(2, 3, 5)$ distributions},
url = {http://eudml.org/doc/294548},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Sagerschnig, Katja
AU - Willse, Travis
TI - The almost Einstein operator for $(2, 3, 5)$ distributions
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 347
EP - 370
AB - For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P < \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta _0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta _0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf {D}$ determines. We apply our formula for $\Theta _0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$.
LA - eng
KW - $(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators
UR - http://eudml.org/doc/294548
ER -
References
top- An, D., Nurowski, P., 10.1007/s00220-013-1839-2, Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. (2014) Zbl1296.53100MR3165459DOI10.1007/s00220-013-1839-2
- Bailey, T.N., Eastwood, M.G., Gover, A.R., 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333. (1994) Zbl0828.53012MR1322223DOI10.1216/rmjm/1181072333
- Bor, G., Montgomery, R., 10.4171/LEM/55-1-8, Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. (2009) Zbl1251.70008MR2541507DOI10.4171/LEM/55-1-8
- Bryant, R., Developments of Cartan geometry and related mathematical problems, RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15. (2006)
- Bryant, R., Hsu, L., 10.1007/BF01232676, Invent. Math. 114 (1993), 435–461. (1993) MR1240644DOI10.1007/BF01232676
- Calderbank, D.M.J., Diemer, T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. (2001) Zbl0985.58002MR1856258
- Čap, A., 10.1515/crll.2005.2005.582.143, J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. (2005) Zbl1075.53022MR2139714DOI10.1515/crll.2005.2005.582.143
- Čap, A., Sagerschnig, K., 10.1016/j.geomphys.2009.04.001, J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. (2009) Zbl1172.53014MR2536853DOI10.1016/j.geomphys.2009.04.001
- Čap, A., Slovák, J., 10.7146/math.scand.a-14413, Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. (2003) Zbl1076.53029MR1997873DOI10.7146/math.scand.a-14413
- Čap, A., Slovák, J., Parabolic geometries I: Background and general theory, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. (2009) Zbl1183.53002MR2532439
- Čap, A., Slovák, J., Souček, V., Bernstein-Gelfand-Gelfand Sequences, Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. (2001) Zbl1159.58309MR1847589
- Cartan, É., 10.24033/asens.618, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. (1910) MR1509120DOI10.24033/asens.618
- Doubrov, B., Govorov, A., [unknown]
- Goursat, É., Leçons sur le problème de Pfaff, Librairie Scientifique J. Hermann, Paris, 1922. (1922)
- Gover, A.R., Panai, R., Willse, T., Nearly Kähler geometry and -distributions via projective holonomy, to appear. 57pp. arXiv:1403.1959. MR3689335
- Graham, C.R., Willse, T., 10.4310/jdg/1354110197, J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. (2012) Zbl1268.53075MR3005060DOI10.4310/jdg/1354110197
- Hammerl, M., Sagerschnig, K., Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition, SIGMA 5 (2009), arXiv:0908.0483. (2009) Zbl1191.53016MR2529166
- Hammerl, M., Somberg, P., Souček, V., Šilhan, J., 10.4171/JEMS/349, J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. (2012) Zbl1264.58029MR2984590DOI10.4171/JEMS/349
- Leistner, T., Nurowski, P., Conformal structures with -ambient metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. (2012) MR3011997
- Nurowski, P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. (2005) Zbl1082.53024MR2157414
- Sagerschnig, K., Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. (2006) Zbl1164.53362MR2322419
- Sagerschnig, K., Weyl structures for generic rank two distributions in dimension five, Ph.D. thesis, Universität Wien, 2008. (2008)
- Sagerschnig, K., Willse, T., The geometry of almost Einstein distributions, SIGMA 13 (2017), 56pp., arXiv:1606.01069. (2017) Zbl1372.32033MR3598788
- Westbury, B., 10.1112/S0024610706022605, J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. (2006) Zbl1154.17304MR2225497DOI10.1112/S0024610706022605
- Willse, T., 10.1016/j.difgeo.2013.10.010, Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. (2014) Zbl1293.53040MR3159952DOI10.1016/j.difgeo.2013.10.010
- Zelenko, I., 10.1016/j.difgeo.2005.09.004, Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. (2006) Zbl1091.58002MR2216939DOI10.1016/j.difgeo.2005.09.004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.