The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig; Travis Willse

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 5, page 347-370
  • ISSN: 0044-8753

Abstract

top
For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of ker Θ 0 : For any ( M , ) , this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on M that 𝐃 determines. We apply our formula for Θ 0 (1) to recover efficiently some known solutions, (2) to construct a distribution with root type [ 3 , 1 ] with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular ( 2 , 3 , 5 ) conformal structure is equal to G 2 .

How to cite

top

Sagerschnig, Katja, and Willse, Travis. "The almost Einstein operator for $(2, 3, 5)$ distributions." Archivum Mathematicum 053.5 (2017): 347-370. <http://eudml.org/doc/294548>.

@article{Sagerschnig2017,
abstract = {For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname\{G\}_2, P)$ for a particular parabolic subgroup $P < \operatorname\{G\}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta _0$ associated to the $7$-dimensional irreducible representation of $\operatorname\{G\}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta _0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf \{D\}$ determines. We apply our formula for $\Theta _0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname\{G\}_2$.},
author = {Sagerschnig, Katja, Willse, Travis},
journal = {Archivum Mathematicum},
keywords = {$(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators},
language = {eng},
number = {5},
pages = {347-370},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The almost Einstein operator for $(2, 3, 5)$ distributions},
url = {http://eudml.org/doc/294548},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Sagerschnig, Katja
AU - Willse, Travis
TI - The almost Einstein operator for $(2, 3, 5)$ distributions
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 5
SP - 347
EP - 370
AB - For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P < \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta _0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta _0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf {D}$ determines. We apply our formula for $\Theta _0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$.
LA - eng
KW - $(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators
UR - http://eudml.org/doc/294548
ER -

References

top
  1. An, D., Nurowski, P., 10.1007/s00220-013-1839-2, Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. (2014) Zbl1296.53100MR3165459DOI10.1007/s00220-013-1839-2
  2. Bailey, T.N., Eastwood, M.G., Gover, A.R., 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333. (1994) Zbl0828.53012MR1322223DOI10.1216/rmjm/1181072333
  3. Bor, G., Montgomery, R., 10.4171/LEM/55-1-8, Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. (2009) Zbl1251.70008MR2541507DOI10.4171/LEM/55-1-8
  4. Bryant, R., Developments of Cartan geometry and related mathematical problems, RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15. (2006) 
  5. Bryant, R., Hsu, L., 10.1007/BF01232676, Invent. Math. 114 (1993), 435–461. (1993) MR1240644DOI10.1007/BF01232676
  6. Calderbank, D.M.J., Diemer, T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. (2001) Zbl0985.58002MR1856258
  7. Čap, A., 10.1515/crll.2005.2005.582.143, J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. (2005) Zbl1075.53022MR2139714DOI10.1515/crll.2005.2005.582.143
  8. Čap, A., Sagerschnig, K., 10.1016/j.geomphys.2009.04.001, J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. (2009) Zbl1172.53014MR2536853DOI10.1016/j.geomphys.2009.04.001
  9. Čap, A., Slovák, J., 10.7146/math.scand.a-14413, Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. (2003) Zbl1076.53029MR1997873DOI10.7146/math.scand.a-14413
  10. Čap, A., Slovák, J., Parabolic geometries I: Background and general theory, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. (2009) Zbl1183.53002MR2532439
  11. Čap, A., Slovák, J., Souček, V., Bernstein-Gelfand-Gelfand Sequences, Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. (2001) Zbl1159.58309MR1847589
  12. Cartan, É., 10.24033/asens.618, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. (1910) MR1509120DOI10.24033/asens.618
  13. Doubrov, B., Govorov, A., [unknown] 
  14. Goursat, É., Leçons sur le problème de Pfaff, Librairie Scientifique J. Hermann, Paris, 1922. (1922) 
  15. Gover, A.R., Panai, R., Willse, T., Nearly Kähler geometry and ( 2 , 3 , 5 ) -distributions via projective holonomy, to appear. 57pp. arXiv:1403.1959. MR3689335
  16. Graham, C.R., Willse, T., 10.4310/jdg/1354110197, J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. (2012) Zbl1268.53075MR3005060DOI10.4310/jdg/1354110197
  17. Hammerl, M., Sagerschnig, K., Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition, SIGMA 5 (2009), arXiv:0908.0483. (2009) Zbl1191.53016MR2529166
  18. Hammerl, M., Somberg, P., Souček, V., Šilhan, J., 10.4171/JEMS/349, J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. (2012) Zbl1264.58029MR2984590DOI10.4171/JEMS/349
  19. Leistner, T., Nurowski, P., Conformal structures with G 2 ( 2 ) -ambient metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. (2012) MR3011997
  20. Nurowski, P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. (2005) Zbl1082.53024MR2157414
  21. Sagerschnig, K., Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. (2006) Zbl1164.53362MR2322419
  22. Sagerschnig, K., Weyl structures for generic rank two distributions in dimension five, Ph.D. thesis, Universität Wien, 2008. (2008) 
  23. Sagerschnig, K., Willse, T., The geometry of almost Einstein ( 2 , 3 , 5 ) distributions, SIGMA 13 (2017), 56pp., arXiv:1606.01069. (2017) Zbl1372.32033MR3598788
  24. Westbury, B., 10.1112/S0024610706022605, J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. (2006) Zbl1154.17304MR2225497DOI10.1112/S0024610706022605
  25. Willse, T., 10.1016/j.difgeo.2013.10.010, Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. (2014) Zbl1293.53040MR3159952DOI10.1016/j.difgeo.2013.10.010
  26. Zelenko, I., 10.1016/j.difgeo.2005.09.004, Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. (2006) Zbl1091.58002MR2216939DOI10.1016/j.difgeo.2005.09.004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.