Comparative analysis of noise robustness of type 2 fuzzy logic controllers
Emanuel Ontiveros-Robles; Patricia Melin; Oscar Castillo
Kybernetika (2018)
- Volume: 54, Issue: 1, page 175-201
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOntiveros-Robles, Emanuel, Melin, Patricia, and Castillo, Oscar. "Comparative analysis of noise robustness of type 2 fuzzy logic controllers." Kybernetika 54.1 (2018): 175-201. <http://eudml.org/doc/294549>.
@article{Ontiveros2018,
abstract = {Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.},
author = {Ontiveros-Robles, Emanuel, Melin, Patricia, Castillo, Oscar},
journal = {Kybernetika},
keywords = {interval Type-2 fuzzy logic; type-reduction; Type-2 fuzzy control; Type-2 fuzzy edge detection},
language = {eng},
number = {1},
pages = {175-201},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Comparative analysis of noise robustness of type 2 fuzzy logic controllers},
url = {http://eudml.org/doc/294549},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Ontiveros-Robles, Emanuel
AU - Melin, Patricia
AU - Castillo, Oscar
TI - Comparative analysis of noise robustness of type 2 fuzzy logic controllers
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 175
EP - 201
AB - Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.
LA - eng
KW - interval Type-2 fuzzy logic; type-reduction; Type-2 fuzzy control; Type-2 fuzzy edge detection
UR - http://eudml.org/doc/294549
ER -
References
top- Abdelaal, M. E., Emara, H. M., Bahgat, A., 10.1109/icit.2013.6505655, In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 100-105. DOI10.1109/icit.2013.6505655
- Amador-Angulo, L., Castillo, O., 10.1109/norbert.2014.6893876, In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), 2014, pp. 1-8. MR3558534DOI10.1109/norbert.2014.6893876
- Caraveo, C., Valdez, F., Castillo, O., 10.1016/j.asoc.2016.02.033, Appl. Soft Comput. 43 (2016), 131-142. DOI10.1016/j.asoc.2016.02.033
- Castillo, O., Amador-Angulo, L., Castro, J. R., Garcia-Valdez, M., 10.1016/j.ins.2016.03.026, Inf. Sci. 354 (2016), 257-274. DOI10.1016/j.ins.2016.03.026
- Farooq, U., Gu, J., Luo, J., 10.1109/robio.2013.6739804, In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2250-2256. DOI10.1109/robio.2013.6739804
- Fernandes, M. A. C., 10.1016/j.neucom.2016.06.051, Neurocomputing 214 (2016), 684-691. DOI10.1016/j.neucom.2016.06.051
- Hagras, H., 10.1109/mci.2007.357192, IEEE Comput. Intell. Mag. 2 (2007), 1, 30-43. DOI10.1109/mci.2007.357192
- Hannan, M. A., Ghani, Z. A., Mohamed, A., Uddin, M. N., 10.1109/tia.2015.2455025, IEEE Trans. Ind. Appl. 41 (2015), 6, 4775-4784. DOI10.1109/tia.2015.2455025
- Hasanien, H. M., Matar, M., 10.1109/tsg.2014.2338398, IEEE Trans. Smart Grid 6 (2015), 1, 158-165. DOI10.1109/tsg.2014.2338398
- Hoseini, S. A., Labibi, B., 10.1109/icnsc.2009.4919257, In: 2009 International Conference on Networking, Sensing and Control, 2009, pp. 118-123. DOI10.1109/icnsc.2009.4919257
- Hassan, S., Khosravi, A., Jaafar, J., Khanesar, M. A., A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting., Energy Build. 127 (2016), 95-104.
- Kamal, E., Aitouche, A., Kuzmych, O., 10.1109/med.2013.6608888, In: 21st Mediterranean Conference on Control and Automation 2013, pp. 1304-1309. DOI10.1109/med.2013.6608888
- Karnik, N. N., Mendel, J. M., 10.1016/s0020-0255(01)00069-x, Inf. Sci. 132 (2001), 1-4, 195-220. MR1822768DOI10.1016/s0020-0255(01)00069-x
- Karnik, N. N., Mendel, J. M., Liang, Q., 10.1109/91.811231, IEEE Trans. Fuzzy Syst. 7 (1999), 6, 643-658. DOI10.1109/91.811231
- Liang, Q., Mendel, J. M., 10.1109/91.873577, IEEE Trans. Fuzzy Syst. 8 (2000), 5-6, 535-550. DOI10.1109/91.873577
- Liu, J., Zhang, W., Chu, X., Liu, Y., Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight., Int. J. Electr. Power Energy Syst. 82 (2016), 1-10.
- Liu, J., Zhang, W., Chu, X., Liu, Y., 10.1016/j.enbuild.2016.05.066, Energy Build. 127 (2016), 95-104. DOI10.1016/j.enbuild.2016.05.066
- Mahmoodabadi, M. J., Jahanshahi, H., 10.1016/j.jestch.2016.01.010, Eng. Sci. Technol. Int. J. 19 (2016), 2, 1084-1098. DOI10.1016/j.jestch.2016.01.010
- Mamdani, E. H., 10.1049/piee.1974.0328, Proc. Inst. Electr. Eng. 121 (1974), 12, 1585-1588. DOI10.1049/piee.1974.0328
- Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N., 10.1016/j.asoc.2016.08.057, Appl. Soft Comput. 45 (201), 901-919. DOI10.1016/j.asoc.2016.08.057
- Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N., 10.1016/j.asoc.2016.08.057, Appl. Soft Comput. 49 (2016), 901-919. DOI10.1016/j.asoc.2016.08.057
- Melin, P., Gonzalez, C. I., Castro, J. R., Mendoza, O., Castillo, O., 10.1109/tfuzz.2013.2297159, IEEE Trans. Fuzzy Syst. 22 (2014), 6, 1515-1525. DOI10.1109/tfuzz.2013.2297159
- Mendel, J. M., John, R. I. B., 10.1109/91.995115, IEEE Trans. Fuzzy Syst. 10 (2002), 2, 117-127. DOI10.1109/91.995115
- Mendel, J. M., Liu, F., Zhai, D., 10.1109/tfuzz.2009.2024411, IEEE Trans. Fuzzy Syst. 17 (2009), 5, 1189-1207. DOI10.1109/tfuzz.2009.2024411
- Ofoli, A. R., Rubaai, A., 10.1109/tia.2006.882669, IEEE Trans. Ind. Appl. 42 (2006), 6, 1367-1374. DOI10.1109/tia.2006.882669
- Premkumar, K., Manikandan, B. V., 10.1016/j.jestch.2015.11.004, Eng. Sci. Technol. Int. J. 19 (2016), 2, 818-840. DOI10.1016/j.jestch.2015.11.004
- Sanchez, M. A., Castillo, O., Castro, J. R., 10.1016/j.eswa.2015.03.024, Expert Syst. Appl. 42 (2015), 14, 5904-5914. DOI10.1016/j.eswa.2015.03.024
- Singh, M., Kumar, P., Kar, I., 10.1109/tsg.2011.2172697, IEEE Trans. Smart Grid 3 (2012), 1, 565-577. DOI10.1109/tsg.2011.2172697
- Wati, D. A. R., 10.1109/isitia.2016.7828743, In: 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 687-692. DOI10.1109/isitia.2016.7828743
- Wu, D., 10.1109/tfuzz.2012.2186818, IEEE Trans. Fuzzy Syst. 20 (2012), 5, 832-848. DOI10.1109/tfuzz.2012.2186818
- Zadeh, L. A., 10.1109/91.493904, IEEE Trans. Fuzzy Syst. 4 (1996), 2, 103-111. MR1409148DOI10.1109/91.493904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.