Comparative analysis of noise robustness of type 2 fuzzy logic controllers

Emanuel Ontiveros-Robles; Patricia Melin; Oscar Castillo

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 175-201
  • ISSN: 0023-5954

Abstract

top
Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.

How to cite

top

Ontiveros-Robles, Emanuel, Melin, Patricia, and Castillo, Oscar. "Comparative analysis of noise robustness of type 2 fuzzy logic controllers." Kybernetika 54.1 (2018): 175-201. <http://eudml.org/doc/294549>.

@article{Ontiveros2018,
abstract = {Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.},
author = {Ontiveros-Robles, Emanuel, Melin, Patricia, Castillo, Oscar},
journal = {Kybernetika},
keywords = {interval Type-2 fuzzy logic; type-reduction; Type-2 fuzzy control; Type-2 fuzzy edge detection},
language = {eng},
number = {1},
pages = {175-201},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Comparative analysis of noise robustness of type 2 fuzzy logic controllers},
url = {http://eudml.org/doc/294549},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Ontiveros-Robles, Emanuel
AU - Melin, Patricia
AU - Castillo, Oscar
TI - Comparative analysis of noise robustness of type 2 fuzzy logic controllers
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 175
EP - 201
AB - Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.
LA - eng
KW - interval Type-2 fuzzy logic; type-reduction; Type-2 fuzzy control; Type-2 fuzzy edge detection
UR - http://eudml.org/doc/294549
ER -

References

top
  1. Abdelaal, M. E., Emara, H. M., Bahgat, A., 10.1109/icit.2013.6505655, In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 100-105. DOI10.1109/icit.2013.6505655
  2. Amador-Angulo, L., Castillo, O., 10.1109/norbert.2014.6893876, In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), 2014, pp. 1-8. MR3558534DOI10.1109/norbert.2014.6893876
  3. Caraveo, C., Valdez, F., Castillo, O., 10.1016/j.asoc.2016.02.033, Appl. Soft Comput. 43 (2016), 131-142. DOI10.1016/j.asoc.2016.02.033
  4. Castillo, O., Amador-Angulo, L., Castro, J. R., Garcia-Valdez, M., 10.1016/j.ins.2016.03.026, Inf. Sci. 354 (2016), 257-274. DOI10.1016/j.ins.2016.03.026
  5. Farooq, U., Gu, J., Luo, J., 10.1109/robio.2013.6739804, In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2250-2256. DOI10.1109/robio.2013.6739804
  6. Fernandes, M. A. C., 10.1016/j.neucom.2016.06.051, Neurocomputing 214 (2016), 684-691. DOI10.1016/j.neucom.2016.06.051
  7. Hagras, H., 10.1109/mci.2007.357192, IEEE Comput. Intell. Mag. 2 (2007), 1, 30-43. DOI10.1109/mci.2007.357192
  8. Hannan, M. A., Ghani, Z. A., Mohamed, A., Uddin, M. N., 10.1109/tia.2015.2455025, IEEE Trans. Ind. Appl. 41 (2015), 6, 4775-4784. DOI10.1109/tia.2015.2455025
  9. Hasanien, H. M., Matar, M., 10.1109/tsg.2014.2338398, IEEE Trans. Smart Grid 6 (2015), 1, 158-165. DOI10.1109/tsg.2014.2338398
  10. Hoseini, S. A., Labibi, B., 10.1109/icnsc.2009.4919257, In: 2009 International Conference on Networking, Sensing and Control, 2009, pp. 118-123. DOI10.1109/icnsc.2009.4919257
  11. Hassan, S., Khosravi, A., Jaafar, J., Khanesar, M. A., A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting., Energy Build. 127 (2016), 95-104. 
  12. Kamal, E., Aitouche, A., Kuzmych, O., 10.1109/med.2013.6608888, In: 21st Mediterranean Conference on Control and Automation 2013, pp. 1304-1309. DOI10.1109/med.2013.6608888
  13. Karnik, N. N., Mendel, J. M., 10.1016/s0020-0255(01)00069-x, Inf. Sci. 132 (2001), 1-4, 195-220. MR1822768DOI10.1016/s0020-0255(01)00069-x
  14. Karnik, N. N., Mendel, J. M., Liang, Q., 10.1109/91.811231, IEEE Trans. Fuzzy Syst. 7 (1999), 6, 643-658. DOI10.1109/91.811231
  15. Liang, Q., Mendel, J. M., 10.1109/91.873577, IEEE Trans. Fuzzy Syst. 8 (2000), 5-6, 535-550. DOI10.1109/91.873577
  16. Liu, J., Zhang, W., Chu, X., Liu, Y., Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight., Int. J. Electr. Power Energy Syst. 82 (2016), 1-10. 
  17. Liu, J., Zhang, W., Chu, X., Liu, Y., 10.1016/j.enbuild.2016.05.066, Energy Build. 127 (2016), 95-104. DOI10.1016/j.enbuild.2016.05.066
  18. Mahmoodabadi, M. J., Jahanshahi, H., 10.1016/j.jestch.2016.01.010, Eng. Sci. Technol. Int. J. 19 (2016), 2, 1084-1098. DOI10.1016/j.jestch.2016.01.010
  19. Mamdani, E. H., 10.1049/piee.1974.0328, Proc. Inst. Electr. Eng. 121 (1974), 12, 1585-1588. DOI10.1049/piee.1974.0328
  20. Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N., 10.1016/j.asoc.2016.08.057, Appl. Soft Comput. 45 (201), 901-919. DOI10.1016/j.asoc.2016.08.057
  21. Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N., 10.1016/j.asoc.2016.08.057, Appl. Soft Comput. 49 (2016), 901-919. DOI10.1016/j.asoc.2016.08.057
  22. Melin, P., Gonzalez, C. I., Castro, J. R., Mendoza, O., Castillo, O., 10.1109/tfuzz.2013.2297159, IEEE Trans. Fuzzy Syst. 22 (2014), 6, 1515-1525. DOI10.1109/tfuzz.2013.2297159
  23. Mendel, J. M., John, R. I. B., 10.1109/91.995115, IEEE Trans. Fuzzy Syst. 10 (2002), 2, 117-127. DOI10.1109/91.995115
  24. Mendel, J. M., Liu, F., Zhai, D., 10.1109/tfuzz.2009.2024411, IEEE Trans. Fuzzy Syst. 17 (2009), 5, 1189-1207. DOI10.1109/tfuzz.2009.2024411
  25. Ofoli, A. R., Rubaai, A., 10.1109/tia.2006.882669, IEEE Trans. Ind. Appl. 42 (2006), 6, 1367-1374. DOI10.1109/tia.2006.882669
  26. Premkumar, K., Manikandan, B. V., 10.1016/j.jestch.2015.11.004, Eng. Sci. Technol. Int. J. 19 (2016), 2, 818-840. DOI10.1016/j.jestch.2015.11.004
  27. Sanchez, M. A., Castillo, O., Castro, J. R., 10.1016/j.eswa.2015.03.024, Expert Syst. Appl. 42 (2015), 14, 5904-5914. DOI10.1016/j.eswa.2015.03.024
  28. Singh, M., Kumar, P., Kar, I., 10.1109/tsg.2011.2172697, IEEE Trans. Smart Grid 3 (2012), 1, 565-577. DOI10.1109/tsg.2011.2172697
  29. Wati, D. A. R., 10.1109/isitia.2016.7828743, In: 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 687-692. DOI10.1109/isitia.2016.7828743
  30. Wu, D., 10.1109/tfuzz.2012.2186818, IEEE Trans. Fuzzy Syst. 20 (2012), 5, 832-848. DOI10.1109/tfuzz.2012.2186818
  31. Zadeh, L. A., 10.1109/91.493904, IEEE Trans. Fuzzy Syst. 4 (1996), 2, 103-111. MR1409148DOI10.1109/91.493904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.