On minimal spectrum of multiplication lattice modules
Mathematica Bohemica (2019)
- Volume: 144, Issue: 1, page 85-97
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBallal, Sachin, and Kharat, Vilas. "On minimal spectrum of multiplication lattice modules." Mathematica Bohemica 144.1 (2019): 85-97. <http://eudml.org/doc/294554>.
@article{Ballal2019,
abstract = {We study the minimal prime elements of multiplication lattice module $M$ over a $C$-lattice $L$. Moreover, we topologize the spectrum $\pi (M)$ of minimal prime elements of $M$ and study several properties of it. The compactness of $\pi (M)$ is characterized in several ways. Also, we investigate the interplay between the topological properties of $\pi (M)$ and algebraic properties of $M$.},
author = {Ballal, Sachin, Kharat, Vilas},
journal = {Mathematica Bohemica},
keywords = {prime element; mimimal prime element; Zariski topology},
language = {eng},
number = {1},
pages = {85-97},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On minimal spectrum of multiplication lattice modules},
url = {http://eudml.org/doc/294554},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Ballal, Sachin
AU - Kharat, Vilas
TI - On minimal spectrum of multiplication lattice modules
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 85
EP - 97
AB - We study the minimal prime elements of multiplication lattice module $M$ over a $C$-lattice $L$. Moreover, we topologize the spectrum $\pi (M)$ of minimal prime elements of $M$ and study several properties of it. The compactness of $\pi (M)$ is characterized in several ways. Also, we investigate the interplay between the topological properties of $\pi (M)$ and algebraic properties of $M$.
LA - eng
KW - prime element; mimimal prime element; Zariski topology
UR - http://eudml.org/doc/294554
ER -
References
top- Alarcon, F., Anderson, D. D., Jayaram, C., 10.1007/BF01876923, Period. Math. Hung. 30 (1995), 1-26. (1995) Zbl0822.06015MR1318850DOI10.1007/BF01876923
- Al-Khouja, E. A., Maximal elements and prime elements in lattice modules, Damascus University Journal for Basic Sciences 19 (2003), 9-21. (2003)
- Ballal, S., Kharat, V., 10.1142/S1793557115500667, Asian-Eur. J. Math. 8 (2015), Article ID 1550066, 10 pages. (2015) Zbl1342.06011MR3424141DOI10.1142/S1793557115500667
- Calliap, F., Tekir, U., 10.22099/ijsts.2011.2156, Iran. J. Sci. Technol., Trans. A, Sci. 35 (2011), 309-313. (2011) Zbl1315.06017MR2958883DOI10.22099/ijsts.2011.2156
- Culhan, D. S., Associated Primes and Primal Decomposition in Modules and Lattice Modules, and Their Duals, Thesis (Ph.D.), University of California, Riverside (2005). (2005) MR2707457
- Dilworth, R. P., 10.2140/pjm.1962.12.481, Pac. J. Math. 12 (1962), 481-498. (1962) Zbl0111.04104MR0143781DOI10.2140/pjm.1962.12.481
- Keimel, K., 10.1007/BF01889903, Acta Math. Acad. Sci. Hung. 23 (1972), 51-69. (1972) Zbl0265.06016MR0318037DOI10.1007/BF01889903
- Manjarekar, C. S., Kandale, U. N., Baer elements in lattice modules, Eur. J. Pure Appl. Math. 8 (2015), 332-342. (2015) Zbl06698174MR3373893
- Pawar, Y. S., Thakare, N. K., 10.1007/BF01849242, Period. Math. Hung. 13 (1982), 309-319. (1982) Zbl0532.06004MR0698578DOI10.1007/BF01849242
- Phadatare, N., Ballal, S., Kharat, V., 10.7151/dmgaa.1266, Discuss. Math. Gen. Algebra Appl. 37 (2017), 59-74. (2017) MR3648183DOI10.7151/dmgaa.1266
- Thakare, N. K., Manjarekar, C. S., Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Algebra and Its Applications. Int. Symp. Algebra and Its Applications, 1981, New Delhi, India Lect. Notes Pure Appl. Math. 91. Marcel Dekker Inc., New York (1984), 265-276 H. L. Manocha et al. (1984) Zbl0551.06012MR0750867
- Thakare, N. K., Manjarekar, C. S., Maeda, S., Abstract spectral theory. II: Minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988), 53-67. (1988) Zbl0653.06002MR0957788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.