Binary equality words with two ’s
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 153-172
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHolub, Štěpán, and Sýkora, Jiří. "Binary equality words with two $b$’s." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 153-172. <http://eudml.org/doc/294564>.
@article{Holub2018,
abstract = {Deciding whether a given word is an equality word of two nonperiodic morphisms is also known as the dual Post correspondence problem. Although the problem is decidable, there is no practical decision algorithm. Already in the binary case, the classification is a large project dating back to 1980s. In this paper we give a full classification of binary equality words in which one of the letters has two occurrences.},
author = {Holub, Štěpán, Sýkora, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {equality languages; dual Post correspondence problem; periodicity forcing},
language = {eng},
number = {2},
pages = {153-172},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Binary equality words with two $b$’s},
url = {http://eudml.org/doc/294564},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Holub, Štěpán
AU - Sýkora, Jiří
TI - Binary equality words with two $b$’s
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 153
EP - 172
AB - Deciding whether a given word is an equality word of two nonperiodic morphisms is also known as the dual Post correspondence problem. Although the problem is decidable, there is no practical decision algorithm. Already in the binary case, the classification is a large project dating back to 1980s. In this paper we give a full classification of binary equality words in which one of the letters has two occurrences.
LA - eng
KW - equality languages; dual Post correspondence problem; periodicity forcing
UR - http://eudml.org/doc/294564
ER -
References
top- Barbin-Le R. E., Le Rest M., 10.1016/0304-3975(85)90060-X, Theoret. Comput. Sci. 41 (1985), no. 1, 61–80 (French. English summary). MR0841023DOI10.1016/0304-3975(85)90060-X
- Baumslag G., Topics in Combinatorial Group Theory, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1993. MR1243634
- Culik K. II, Karhumäki J., 10.1051/ita/1980140403491, RAIRO Inform. Théor. 14 (1980), no. 4, 349–369. MR0607436DOI10.1051/ita/1980140403491
- Day J. D., Reidenbach D., Schneider J. C., On the dual post correspondence problem, Internat. J. Found. Comput. Sci. 25 (2014), no. 8, 1033–1048. MR3315805
- Day J. D., Reidenbach D., Schneider J. C., 10.1016/j.tcs.2015.08.033, Theoret. Comput. Sci. 601 (2015), 2–14. MR3396330DOI10.1016/j.tcs.2015.08.033
- Ehrenfeucht A., Karhumäki J., Rozenberg G., 10.1016/0304-3975(89)90080-7, Theoret. Comput. Sci. 21 (1982), no. 2, 119–144. MR0677104DOI10.1016/0304-3975(89)90080-7
- Ehrenfeucht A., Karhumäki J., Rozenberg G., 10.1016/0021-8693(83)90119-9, J. Algebra 85 (1983), no. 1, 76–85. MR0723068DOI10.1016/0021-8693(83)90119-9
- Hadravová J., Structure of Equality Sets, PhD. Thesis, Charles University in Prague, Praha, 2015.
- Hadravová J., Holub Š., Equation in words, Language and Automata Theory and Applications, Lecture Notes in Comput. Sci., Springer, Cham, 2015, pp. 414–423. MR3344820
- Halava V., Harju T., Hirvensalo M., 10.1016/S0304-3975(01)00157-8, Theoret. Comput. Sci. 276 (2002), no. 1–2, 183–204. MR1896352DOI10.1016/S0304-3975(01)00157-8
- Halava V., Holub Š., Binary (Generalized) Post Correspondence Problem is in , TUCS Technical Report, 785, Turku, 2006. MR2081369
- Holub Š., A unique structure of two-generated binary equality sets, Developments in Language Theory (Ito M., ed.), 6th International Conf., Kyoto, 2002, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003, pp. 245–257. Zbl1015.68089MR2177348
- Holub Š., 10.1016/S0021-8693(02)00534-3, J. Algebra 259 (2003), no. 1, 1–42. Zbl1010.68101MR1953706DOI10.1016/S0021-8693(02)00534-3
- Holub Š., Binary equality languages for periodic morphisms, Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, RIMS Kokyuroku, 1366, Kyoto University, 2004, pp. 1880–2818.
- Karhumäki J., Maňuch J., Plandowski W., On defect effect of bi-infinite words, Mathematical Foundations of Computer Science, 1998 (Brno), Lecture Notes in Comput. Sci., 1450, Springer, Berlin, 1998, pp. 674–682. MR1684115
- Lothaire M., Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, Cambridge, 2002.
- Lyndon R. C., Schützenberger, M. P., 10.1307/mmj/1028998766, Michigan Math. J. 9 (1962), no. 4, 289–298. MR0162838DOI10.1307/mmj/1028998766
- Maňuch J., Defect Theorems and Infinite Words, TUCS Dissertations, 41, Turku, 2002.
- Post E. L., 10.1090/S0002-9904-1946-08555-9, Bull. Amer. Math. Soc. 52 (1946), no. 4, 264–268. Zbl0063.06329MR0015343DOI10.1090/S0002-9904-1946-08555-9
- Rozenberg G., Salomaa A., eds., Handbook of Formal Languages, Vol. 1: Word, Language, Grammar, Springer, New York, 1997. MR1469993
- Spehner J.-C., Quelques problèmes d'extension, de conjugaison et de presentation des sous-monoïdes d'un monoïde libre, Thèse, Université Paris VII, Paris, 1976 (French).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.