Multistage risk premiums in portfolio optimization
Kybernetika (2017)
- Volume: 53, Issue: 6, page 992-1011
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKopa, Miloš, and Petrová, Barbora. "Multistage risk premiums in portfolio optimization." Kybernetika 53.6 (2017): 992-1011. <http://eudml.org/doc/294565>.
@article{Kopa2017,
abstract = {This paper deals with a multistage stochastic programming portfolio selection problem with a new type of risk premium constraints. These risk premiums are constructed on the multistage scenario tree. Two ways of the construction are introduced and compared. The risk premiums are incorporated in the multistage stochastic programming portfolio selection problem. The problem maximizes the multivariate (multiperiod) utility function under condition that the multistage risk premiums are smaller than a prescribed level. The problem does not assume any separability of the multiperiod utility function. The performance of the suggested models is demonstrated for several kinds of multiperiod utility functions and several formulations of the multistage risk premium constraints. In all cases, including the risk premium constraints avoids the riskier positions.},
author = {Kopa, Miloš, Petrová, Barbora},
journal = {Kybernetika},
keywords = {multistage risk premium; utility function; portfolio optimization; multistage stochastic programming},
language = {eng},
number = {6},
pages = {992-1011},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multistage risk premiums in portfolio optimization},
url = {http://eudml.org/doc/294565},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Kopa, Miloš
AU - Petrová, Barbora
TI - Multistage risk premiums in portfolio optimization
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 6
SP - 992
EP - 1011
AB - This paper deals with a multistage stochastic programming portfolio selection problem with a new type of risk premium constraints. These risk premiums are constructed on the multistage scenario tree. Two ways of the construction are introduced and compared. The risk premiums are incorporated in the multistage stochastic programming portfolio selection problem. The problem maximizes the multivariate (multiperiod) utility function under condition that the multistage risk premiums are smaller than a prescribed level. The problem does not assume any separability of the multiperiod utility function. The performance of the suggested models is demonstrated for several kinds of multiperiod utility functions and several formulations of the multistage risk premium constraints. In all cases, including the risk premium constraints avoids the riskier positions.
LA - eng
KW - multistage risk premium; utility function; portfolio optimization; multistage stochastic programming
UR - http://eudml.org/doc/294565
ER -
References
top- Ambarish, R., Kallberg, J. G., 10.1007/bf00125658, Theory Decision 22 (1987), 77-96. MR0874520DOI10.1007/bf00125658
- Branda, M., Kopa, M., 10.1016/j.orl.2016.02.007, Oper. Res. Lett.44 (2016), 285-289. MR3466671DOI10.1016/j.orl.2016.02.007
- Duncan, G. T., 10.2307/1912680, Econometrica 45 (1977), 895-903. Zbl0367.90017MR0496493DOI10.2307/1912680
- Dupačová, J., Kopa, M., 10.1016/j.ejor.2013.06.018, Europ. J. Oper. Res. 234 (2014), 2, 434-441. MR3144732DOI10.1016/j.ejor.2013.06.018
- Dupačová, J., Hurt, J., Štěpán, J., Stochastic Modeling in Economics and Finance., Kluwer, 2002. MR2008457
- Høyland, K., Kaut, M., Wallace, S. W., 10.1023/a:1021853807313, Comput. Optim. Appl. 24 (2003), 2-3, 169-185. Zbl1094.90579MR1969151DOI10.1023/a:1021853807313
- French, K. R., 6 portfolios formed on size and book-to-market (2 3).
- Kihlstrom, R. E., Mirman, L. J., 10.1016/0022-0531(74)90091-x, J. Econom. Theory 8 (1974), 361-388. MR0496471DOI10.1016/0022-0531(74)90091-x
- Kopa, M., Moriggia, V., Vitali, S., 10.1007/s10479-016-2387-x, Ann. Oper. Res. 260 (2018), 1-2, 255-291. MR3741562DOI10.1007/s10479-016-2387-x
- Post, T., Kopa, M., 10.1287/mnsc.2016.2506, Management Sci. 63 (2017), 10, 3381-3392. DOI10.1287/mnsc.2016.2506
- Post, T., Fang, Y., Kopa, M., 10.1287/mnsc.2014.1960, Management Sci. 61 (2015), 7, 1615-1629. DOI10.1287/mnsc.2014.1960
- Pratt, J. W., 10.2307/1913738, Econometrica 32 (1064), 122-136. DOI10.2307/1913738
- Richard, S. F., 10.1287/mnsc.22.1.12, Management Sci. 21 (1975), 12-21. MR0436907DOI10.1287/mnsc.22.1.12
- Rockafellar, R. T., Uryasev, S., 10.1016/s0378-4266(02)00271-6, J. Banking Finance 26 (2002), 1443-1471. DOI10.1016/s0378-4266(02)00271-6
- Shapiro, A., Dentcheva, D., Ruszczynski, A., 10.1137/1.9780898718751, SIAM, Philadelphia 2009. MR2562798DOI10.1137/1.9780898718751
- Šmíd, M., Kopa, M., 10.14736/kyb-2017-5-0922, Kybernetika 53 (2017), 5, 922-958. DOI10.14736/kyb-2017-5-0922
- Vitali, S., Moriggia, V., Kopa, M., 10.1137/1.9780898718751, Comput. Management Sci. 14 (2017), 1, 135-160. MR3599603DOI10.1137/1.9780898718751
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.