Radon-Nikodym property
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 4, page 461-464
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKhurana, Surjit Singh. "Radon-Nikodym property." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 461-464. <http://eudml.org/doc/294585>.
@article{Khurana2017,
abstract = {For a Banach space $E$ and a probability space $(X, \mathcal \{A\}, \lambda )$, a new proof is given that a measure $\mu : \mathcal \{A\} \rightarrow E$, with $\mu \ll \lambda $, has RN derivative with respect to $\lambda $ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_\{C\} : \mathcal \{A\} \rightarrow [0, \infty ]$ is a finite valued countably additive measure. Here we define $|\mu |_\{C\}(A) = \sup \lbrace \sum _\{k\} |\langle \mu (A_\{k\}), f_\{k\}\rangle |\rbrace $ where $\lbrace A_\{k\}\rbrace $ is a finite disjoint collection of elements from $\mathcal \{A\}$, each contained in $A$, and $\lbrace f_\{k\}\rbrace \subset E^\{\prime \}$ satisfies $\sup _\{k\} |f_\{k\} (C)|\le 1$. Then the result is extended to the case when $E$ is a Frechet space.},
author = {Khurana, Surjit Singh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative},
language = {eng},
number = {4},
pages = {461-464},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Radon-Nikodym property},
url = {http://eudml.org/doc/294585},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Khurana, Surjit Singh
TI - Radon-Nikodym property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 461
EP - 464
AB - For a Banach space $E$ and a probability space $(X, \mathcal {A}, \lambda )$, a new proof is given that a measure $\mu : \mathcal {A} \rightarrow E$, with $\mu \ll \lambda $, has RN derivative with respect to $\lambda $ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_{C} : \mathcal {A} \rightarrow [0, \infty ]$ is a finite valued countably additive measure. Here we define $|\mu |_{C}(A) = \sup \lbrace \sum _{k} |\langle \mu (A_{k}), f_{k}\rangle |\rbrace $ where $\lbrace A_{k}\rbrace $ is a finite disjoint collection of elements from $\mathcal {A}$, each contained in $A$, and $\lbrace f_{k}\rbrace \subset E^{\prime }$ satisfies $\sup _{k} |f_{k} (C)|\le 1$. Then the result is extended to the case when $E$ is a Frechet space.
LA - eng
KW - liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative
UR - http://eudml.org/doc/294585
ER -
References
top- Davis W.J., Figiel T., Johnson W.B., Pelczynski A., 10.1016/0022-1236(74)90044-5, J. Funct. Anal. 17 (1974), 311–327. Zbl0306.46020MR0355536DOI10.1016/0022-1236(74)90044-5
- Diestel J., Uhl J.J., Vector Measures, Amer. Math. Soc. Surveys, 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
- Gruenwald M.E., Wheeler R.F., A strict representation of , J. Math. Anal. Appl. 155 (1991), 140–155. MR1089331
- Khurana S.S., 10.1090/S0002-9947-1978-0492297-X, Trans Amer. Math. Soc. 241 (1978), 195–211. MR0492297DOI10.1090/S0002-9947-1978-0492297-X
- Khurana S.S., 10.1007/BF01420966, Math. Ann. 234 (1978), 159–166. MR0494178DOI10.1007/BF01420966
- Khurana S.S., 10.2140/pjm.1979.83.387, Pacific J. Math. 83 (1979), 387–391. Zbl0425.46009MR0557940DOI10.2140/pjm.1979.83.387
- Phelps R.R., Lectures on Choquet's Theorem, D. van Nostrand Company, Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. Zbl0997.46005MR0193470
- Schaefer H.H., Topological Vector Spaces, Springer, 1986. Zbl0983.46002MR0342978
- Ionescu Tulcea A., Ionescu Tulcea C., Topics in the theory of lifting, Springer, New York, 1969. Zbl0179.46303MR0276438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.