Radon-Nikodym property

Surjit Singh Khurana

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 4, page 461-464
  • ISSN: 0010-2628

Abstract

top
For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.

How to cite

top

Khurana, Surjit Singh. "Radon-Nikodym property." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 461-464. <http://eudml.org/doc/294585>.

@article{Khurana2017,
abstract = {For a Banach space $E$ and a probability space $(X, \mathcal \{A\}, \lambda )$, a new proof is given that a measure $\mu : \mathcal \{A\} \rightarrow E$, with $\mu \ll \lambda $, has RN derivative with respect to $\lambda $ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_\{C\} : \mathcal \{A\} \rightarrow [0, \infty ]$ is a finite valued countably additive measure. Here we define $|\mu |_\{C\}(A) = \sup \lbrace \sum _\{k\} |\langle \mu (A_\{k\}), f_\{k\}\rangle |\rbrace $ where $\lbrace A_\{k\}\rbrace $ is a finite disjoint collection of elements from $\mathcal \{A\}$, each contained in $A$, and $\lbrace f_\{k\}\rbrace \subset E^\{\prime \}$ satisfies $\sup _\{k\} |f_\{k\} (C)|\le 1$. Then the result is extended to the case when $E$ is a Frechet space.},
author = {Khurana, Surjit Singh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative},
language = {eng},
number = {4},
pages = {461-464},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Radon-Nikodym property},
url = {http://eudml.org/doc/294585},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Khurana, Surjit Singh
TI - Radon-Nikodym property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 461
EP - 464
AB - For a Banach space $E$ and a probability space $(X, \mathcal {A}, \lambda )$, a new proof is given that a measure $\mu : \mathcal {A} \rightarrow E$, with $\mu \ll \lambda $, has RN derivative with respect to $\lambda $ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_{C} : \mathcal {A} \rightarrow [0, \infty ]$ is a finite valued countably additive measure. Here we define $|\mu |_{C}(A) = \sup \lbrace \sum _{k} |\langle \mu (A_{k}), f_{k}\rangle |\rbrace $ where $\lbrace A_{k}\rbrace $ is a finite disjoint collection of elements from $\mathcal {A}$, each contained in $A$, and $\lbrace f_{k}\rbrace \subset E^{\prime }$ satisfies $\sup _{k} |f_{k} (C)|\le 1$. Then the result is extended to the case when $E$ is a Frechet space.
LA - eng
KW - liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative
UR - http://eudml.org/doc/294585
ER -

References

top
  1. Davis W.J., Figiel T., Johnson W.B., Pelczynski A., 10.1016/0022-1236(74)90044-5, J. Funct. Anal. 17 (1974), 311–327. Zbl0306.46020MR0355536DOI10.1016/0022-1236(74)90044-5
  2. Diestel J., Uhl J.J., Vector Measures, Amer. Math. Soc. Surveys, 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
  3. Gruenwald M.E., Wheeler R.F., A strict representation of L 1 ( μ , X ) , J. Math. Anal. Appl. 155 (1991), 140–155. MR1089331
  4. Khurana S.S., 10.1090/S0002-9947-1978-0492297-X, Trans Amer. Math. Soc. 241 (1978), 195–211. MR0492297DOI10.1090/S0002-9947-1978-0492297-X
  5. Khurana S.S., 10.1007/BF01420966, Math. Ann. 234 (1978), 159–166. MR0494178DOI10.1007/BF01420966
  6. Khurana S.S., 10.2140/pjm.1979.83.387, Pacific J. Math. 83 (1979), 387–391. Zbl0425.46009MR0557940DOI10.2140/pjm.1979.83.387
  7. Phelps R.R., Lectures on Choquet's Theorem, D. van Nostrand Company, Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. Zbl0997.46005MR0193470
  8. Schaefer H.H., Topological Vector Spaces, Springer, 1986. Zbl0983.46002MR0342978
  9. Ionescu Tulcea A., Ionescu Tulcea C., Topics in the theory of lifting, Springer, New York, 1969. Zbl0179.46303MR0276438

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.