# Note on strongly nil clean elements in rings

Aleksandra Kostić; Zoran Z. Petrović; Zoran S. Pucanović; Maja Roslavcev

Czechoslovak Mathematical Journal (2019)

- Volume: 69, Issue: 1, page 87-92
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topKostić, Aleksandra, et al. "Note on strongly nil clean elements in rings." Czechoslovak Mathematical Journal 69.1 (2019): 87-92. <http://eudml.org/doc/294586>.

@article{Kostić2019,

abstract = {Let $R$ be an associative unital ring and let $a\in R$ be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.},

author = {Kostić, Aleksandra, Petrović, Zoran Z., Pucanović, Zoran S., Roslavcev, Maja},

journal = {Czechoslovak Mathematical Journal},

keywords = {nilpotent element; nil clean element},

language = {eng},

number = {1},

pages = {87-92},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Note on strongly nil clean elements in rings},

url = {http://eudml.org/doc/294586},

volume = {69},

year = {2019},

}

TY - JOUR

AU - Kostić, Aleksandra

AU - Petrović, Zoran Z.

AU - Pucanović, Zoran S.

AU - Roslavcev, Maja

TI - Note on strongly nil clean elements in rings

JO - Czechoslovak Mathematical Journal

PY - 2019

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 69

IS - 1

SP - 87

EP - 92

AB - Let $R$ be an associative unital ring and let $a\in R$ be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.

LA - eng

KW - nilpotent element; nil clean element

UR - http://eudml.org/doc/294586

ER -

## References

top- Chen, H., 10.4134/BKMS.2011.48.4.759, Bull. Korean Math. Soc. 48 (2011), 759-767. (2011) Zbl1233.16022MR2848142DOI10.4134/BKMS.2011.48.4.759
- Chen, H., 10.4134/BKMS.2012.49.3.589, Bull. Korean Math. Soc. 49 (2012), 589-599. (2012) Zbl1248.15012MR2963422DOI10.4134/BKMS.2012.49.3.589
- Chen, H., 10.1080/00927872.2011.637265, Commun. Algebra 41 (2013), 1074-1086. (2013) Zbl1286.16025MR3037180DOI10.1080/00927872.2011.637265
- Chen, H., Sheibani, M., 10.1080/00927872.2016.1222411, Commun. Algebra 45 (2017), 1719-1726. (2017) Zbl06715289MR3576689DOI10.1080/00927872.2016.1222411
- Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
- Hirano, Y., Tominaga, H., Yaqub, A., On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40. (1988) Zbl0665.16016MR0976729
- Koşan, T., Wang, Z., Zhou, Y., 10.1016/j.jpaa.2015.07.009, J. Pure Appl. Algebra 220 (2016), 633-646. (2016) Zbl1335.16026MR3399382DOI10.1016/j.jpaa.2015.07.009
- Šter, J., Rings in which nilpotents form a subring, Carpathian J. Math. 32 (2016), 251-258. (2016) MR3587893

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.