Geometry of Mus-Sasaki metric

Abderrahim Zagane; Mustapha Djaa

Communications in Mathematics (2018)

  • Volume: 26, Issue: 2, page 113-126
  • ISSN: 1804-1388

Abstract

top
In this paper, we introduce the Mus-Sasaki metric on the tangent bundle T M as a new natural metric non-rigid on T M . First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.

How to cite

top

Zagane, Abderrahim, and Djaa, Mustapha. "Geometry of Mus-Sasaki metric." Communications in Mathematics 26.2 (2018): 113-126. <http://eudml.org/doc/294590>.

@article{Zagane2018,
abstract = {In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.},
author = {Zagane, Abderrahim, Djaa, Mustapha},
journal = {Communications in Mathematics},
keywords = {Horizontal lift; vertical lift; Mus-Sasaki metric; scalar curvature},
language = {eng},
number = {2},
pages = {113-126},
publisher = {University of Ostrava},
title = {Geometry of Mus-Sasaki metric},
url = {http://eudml.org/doc/294590},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Zagane, Abderrahim
AU - Djaa, Mustapha
TI - Geometry of Mus-Sasaki metric
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 113
EP - 126
AB - In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.
LA - eng
KW - Horizontal lift; vertical lift; Mus-Sasaki metric; scalar curvature
UR - http://eudml.org/doc/294590
ER -

References

top
  1. Abbassi, M.T.K., Sarih, M., On Natural Metrics on Tangent Bundles of Riemannian Manifolds, Archivum Mathematicum, 41, 2005, 71-92, (2005) MR2142144
  2. Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications, Appl. Math. Comput., 142, 2--3, 2003, 309-319, (2003) MR1979438
  3. Cheeger, J., Gromoll, D., 10.2307/1970819, Ann. of Math., 96, 2, 1972, 413-443, (1972) Zbl0246.53049MR0309010DOI10.2307/1970819
  4. Djaa, M., Djaa, N.E.H., Nasri, R., Natural Metrics on T 2 M and Harmonicity, International Electronic Journal of Geometry, 6, 1, 2013, 100-111, (2013) MR3048524
  5. Djaa, M., Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, 4, 1985, 147-165, (1985) MR0908354
  6. Djaa, N.E.H., Ouakkas, S., Djaa, M., Harmonic sections on the tangent bundle of order two, Annales Mathematicae et Informaticae, 38, 2011, 15-25, (2011) MR2872181
  7. Dombrowski, P., On the Geometry of the Tangent Bundle, J. Reine Angew. Math., 210, 1962, 73-88, (1962) MR0141050
  8. Gezer, A., On the Tangent Bundle With Deformed Sasaki Metric, International Electronic Journal of Geometry, 6, 2, 2013, 19-31, (2013) MR3125828
  9. Gudmundsson, S., Kappos, E., 10.3836/tjm/1244208938, Tokyo J. Math., 25, 1, 2002, 75-83, (2002) MR1908215DOI10.3836/tjm/1244208938
  10. Sekizawa, O. Kowalski and M., On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius, Archivum Mathematicum, 44, 2008, 391-401, (2008) MR2501575
  11. Musso, E., Tricerri, F., 10.1007/BF01761461, Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, (1988) MR0946027DOI10.1007/BF01761461
  12. Salimov, A.A., Agca, F., Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255, (2011) MR2802327
  13. Salimov, A.A, Gezer, A., 10.1007/s11401-011-0646-3, Chinese Annals of Mathematics, 32, 3, 2011, 369-386, (2011) MR2805406DOI10.1007/s11401-011-0646-3
  14. Salimov, A.A., Gezer, A., Akbulut, K., 10.1007/s00009-009-0001-z, Mediterr. J. Math, 6, 2, 2009, 135-147, (2009) MR2516246DOI10.1007/s00009-009-0001-z
  15. Salimov, A.A., Kazimova, S., Geodesics of the Cheeger-Gromoll Metric, Turk. J. Math., 33, 2009, 99-105, (2009) MR2524119
  16. Sasaki, S., 10.2748/tmj/1178244169, Tohoku Math. J., 14, 1962, 146-155, (1962) MR0145456DOI10.2748/tmj/1178244169
  17. Sekizawa, M., 10.3836/tjm/1270130381, Tokyo J. Math., 14, 2, 1991, 407-417, (1991) MR1138176DOI10.3836/tjm/1270130381
  18. Yano, K., Ishihara, S., Tangent and Cotangent Bundles, 1973, Marcel Dekker. INC., New York, (1973) Zbl0262.53024MR0350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.