On linear preservers of two-sided gut-majorization on
Asma Ilkhanizadeh Manesh; Ahmad Mohammadhasani
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 791-801
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topIlkhanizadeh Manesh, Asma, and Mohammadhasani, Ahmad. "On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$." Czechoslovak Mathematical Journal 68.3 (2018): 791-801. <http://eudml.org/doc/294591>.
@article{IlkhanizadehManesh2018,
abstract = {For $X,Y \in \{\bf M\}_\{n,m\}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _\{\rm gut\} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _\{\rm gut\}$ as follows. $X\sim _\{\rm gut\}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _\{\rm gut\}$ on $\mathbb \{R\}^\{n\}$ and strong linear preservers of this relation on $\{\bf M\}_\{n,m\}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _\{\rm gut\}$ on $\mathbb \{R\}^\{n\}$ and $\{\bf M\}_\{n,m\}$.},
author = {Ilkhanizadeh Manesh, Asma, Mohammadhasani, Ahmad},
journal = {Czechoslovak Mathematical Journal},
keywords = {g-row stochastic matrix; gut-majorization; linear preserver; strong linear preserver; two-sided gut-majorization},
language = {eng},
number = {3},
pages = {791-801},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On linear preservers of two-sided gut-majorization on $\{\bf M\}_\{n,m\}$},
url = {http://eudml.org/doc/294591},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Ilkhanizadeh Manesh, Asma
AU - Mohammadhasani, Ahmad
TI - On linear preservers of two-sided gut-majorization on ${\bf M}_{n,m}$
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 791
EP - 801
AB - For $X,Y \in {\bf M}_{n,m}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _{\rm gut} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _{\rm gut}$ as follows. $X\sim _{\rm gut}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _{\rm gut}$ on $\mathbb {R}^{n}$ and strong linear preservers of this relation on ${\bf M}_{n,m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _{\rm gut}$ on $\mathbb {R}^{n}$ and ${\bf M}_{n,m}$.
LA - eng
KW - g-row stochastic matrix; gut-majorization; linear preserver; strong linear preserver; two-sided gut-majorization
UR - http://eudml.org/doc/294591
ER -
References
top- Armandnejad, A., Manesh, A. Ilkhanizadeh, 10.13001/1081-3810.1547, Electron. J. Linear Algebra 23 (2012), 646-654. (2012) Zbl1253.15040MR2966796DOI10.13001/1081-3810.1547
- Brualdi, R. A., Dahl, G., 10.1080/03081087.2012.689980, Linear Multilinear Algebra 61 (2013), 393-408. (2013) Zbl1269.15034MR3003432DOI10.1080/03081087.2012.689980
- Hasani, A. M., Radjabalipour, M., 10.13001/1081-3810.1236, Electron. J. Linear Algebra 15 (2006), 260-268. (2006) Zbl1145.15003MR2255479DOI10.13001/1081-3810.1236
- Hasani, A. M., Radjabalipour, M., 10.1016/j.laa.2006.12.016, Linear Algebra Appl. 423 (2007), 255-261. (2007) Zbl1120.15004MR2312405DOI10.1016/j.laa.2006.12.016
- Manesh, A. Ilkhanizadeh, On linear preservers of sgut-majorization on , Bull. Iran. Math. Soc. 42 (2016), 471-481. (2016) Zbl1373.15043MR3498168
- Manesh, A. Ilkhanizadeh, 10.13001/1081-3810.3235, Electron. J. Linear Algebra 31 (2016), 13-26. (2016) Zbl1332.15011MR3484660DOI10.13001/1081-3810.3235
- Manesh, A. Ilkhanizadeh, Armandnejad, A., 10.1007/978-3-0348-0816-3_15, Operator Theory, Operator Algebras and Applications M. Bastos Operator Theory: Advances and Applications 242, Birkhäuser, Basel (2014), 253-259. (2014) Zbl1318.15016MR3243295DOI10.1007/978-3-0348-0816-3_15
- Li, C. K., Poon, E., 10.1016/S0024-3795(00)00328-1, Linear Algebra Appl. 235 (2001), 141-149. (2001) Zbl0999.15030MR1810100DOI10.1016/S0024-3795(00)00328-1
- Motlaghian, S. M., Armandnejad, A., Hall, F. J., 10.1007/s10587-016-0296-4, Czech. Math. J. 66 (2016), 847-858. (2016) Zbl06644037MR3556871DOI10.1007/s10587-016-0296-4
- Niezgoda, M., 10.1016/j.laa.2011.07.013, Linear Algebra Appl. 436 (2012), 579-594. (2012) Zbl1244.26047MR2854893DOI10.1016/j.laa.2011.07.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.