Some equivalent metrics for bounded normal operators

Mohammad Reza Jabbarzadeh; Rana Hajipouri

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 2, page 201-212
  • ISSN: 0862-7959

Abstract

top
Some stronger and equivalent metrics are defined on , the set of all bounded normal operators on a Hilbert space and then some topological properties of are investigated.

How to cite

top

Jabbarzadeh, Mohammad Reza, and Hajipouri, Rana. "Some equivalent metrics for bounded normal operators." Mathematica Bohemica 143.2 (2018): 201-212. <http://eudml.org/doc/294608>.

@article{Jabbarzadeh2018,
abstract = {Some stronger and equivalent metrics are defined on $\mathcal \{M\}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal \{M\}$ are investigated.},
author = {Jabbarzadeh, Mohammad Reza, Hajipouri, Rana},
journal = {Mathematica Bohemica},
keywords = {Hilbert space; normal operator; equivalent metrics; composition operator},
language = {eng},
number = {2},
pages = {201-212},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some equivalent metrics for bounded normal operators},
url = {http://eudml.org/doc/294608},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Jabbarzadeh, Mohammad Reza
AU - Hajipouri, Rana
TI - Some equivalent metrics for bounded normal operators
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 201
EP - 212
AB - Some stronger and equivalent metrics are defined on $\mathcal {M}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal {M}$ are investigated.
LA - eng
KW - Hilbert space; normal operator; equivalent metrics; composition operator
UR - http://eudml.org/doc/294608
ER -

References

top
  1. Benharrat, M., Messirdi, B., Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces, Int. J. Anal. Appl. 8 (2015), 110-122. (2015) 
  2. Cordes, H. O., Labrousse, J. P., The invariance of the index in the metric space of closed operators, J. Math. Mech. 12 (1963), 693-719. (1963) Zbl0148.12402MR0162142
  3. Gilfeather, F., 10.2307/2040905, Proc. Am. Math. Soc. 68 (1978), 44-48. (1978) Zbl0381.47003MR0475583DOI10.2307/2040905
  4. Kato, T., 10.1007/978-3-642-66282-9, Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1976). (1976) Zbl0342.47009MR0407617DOI10.1007/978-3-642-66282-9
  5. Kaufman, W. E., 10.2307/2044673, Proc. Am. Math. Soc. 90 (1984), 83-87. (1984) Zbl0551.47001MR0722420DOI10.2307/2044673
  6. Kittaneh, F., 10.2307/2047922, Proc. Am. Math. Soc. 110 (1990), 789-798. (1990) Zbl0721.47013MR1027097DOI10.2307/2047922
  7. Labrousse, J. P., On a metric space of closed operators on a Hilbert space, Univ. Nac. Tucumán, Rev., Ser. A 16 (1966), 45-77. (1966) Zbl0154.15803MR0226445
  8. Labrousse, J. P., Quelques topologies sur des espaces d'opérateurs dans des espaces de Hilbert et leurs applications, Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages. (1970) 
  9. Lambert, A., Petrovic, S., 10.1016/j.jfa.2004.06.001, J. Funct. Anal. 219 (2005), 93-108. (2005) Zbl1061.47018MR2108360DOI10.1016/j.jfa.2004.06.001
  10. Singh, R. K., Manhas, J. S., Composition Operators on Function Spaces, North-Holland Mathematics Studies 179. North-Holland, Amsterdam (1993). (1993) Zbl0788.47021MR1246562

NotesEmbed ?

top

You must be logged in to post comments.