Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups

Rory Biggs

Communications in Mathematics (2017)

  • Volume: 25, Issue: 2, page 99-135
  • ISSN: 1804-1388

Abstract

top
We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.

How to cite

top

Biggs, Rory. "Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups." Communications in Mathematics 25.2 (2017): 99-135. <http://eudml.org/doc/294613>.

@article{Biggs2017,
abstract = {We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.},
author = {Biggs, Rory},
journal = {Communications in Mathematics},
keywords = {Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups},
language = {eng},
number = {2},
pages = {99-135},
publisher = {University of Ostrava},
title = {Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups},
url = {http://eudml.org/doc/294613},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Biggs, Rory
TI - Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 2
SP - 99
EP - 135
AB - We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.
LA - eng
KW - Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups
UR - http://eudml.org/doc/294613
ER -

References

top
  1. Agrachev, A., Barilari, D., 10.1007/s10883-012-9133-8, J. Dyn. Control Syst., 18, 1, 2012, 21-44, (2012) Zbl1244.53039MR2902707DOI10.1007/s10883-012-9133-8
  2. Alekseevskiĭ, D.V., The conjugacy of polar decompositions of Lie groups, Mat. Sb. (N.S.), 84, 126, 1971, 14-26, (1971) MR0277662
  3. Alekseevskiĭ, D.V., Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.), 138, 1, 1975, 93-117, (1975) MR0362145
  4. Bellaïche, A., The tangent space in sub-Riemannian geometry, A. Bellaïche, J.J. Risler (eds.), Sub-Riemannian geometry, 1996, 1-78, Birkhäuser, Basel, (1996) Zbl0862.53031MR1421822
  5. Biggs, R., Nagy, P. T., 10.1007/s10883-016-9316-9, J. Dyn. Control Syst., 22, 3, 2016, 563-594, (2016) Zbl1347.53029MR3517618DOI10.1007/s10883-016-9316-9
  6. Biggs, R., Remsing, C.C., On the classification of real four-dimensional Lie groups, J. Lie Theory, 26, 4, 2016, 1001-1035, (2016) Zbl1356.22008MR3487553
  7. Biggs, R., Remsing, C.C., 10.1007/s10440-016-0074-1, Acta Appl. Math., 148, 2017, 1-59, (2017) MR3621290DOI10.1007/s10440-016-0074-1
  8. Biggs, R., Remsing, C.C., Invariant control systems on Lie groups, G. Falcone (ed.), Lie groups, differential equations, and geometry: advances and surveys, 2017, 127-181, Springer, (2017) MR3726533
  9. Capogna, L., Donne, E. Le, 10.1353/ajm.2016.0043, Amer. J. Math., 138, 5, 2016, 1439-1454, (2016) Zbl1370.53030MR3553396DOI10.1353/ajm.2016.0043
  10. Gordon, C., 10.1007/BF01421956, Math. Ann., 248, 2, 1980, 185-192, (1980) Zbl0412.53026MR0573347DOI10.1007/BF01421956
  11. Gordon, C.S., Wilson, E.N., 10.1090/S0002-9947-1988-0936815-X, Trans. Amer. Math. Soc., 307, 1, 1988, 245-269, (1988) Zbl0664.53022MR0936815DOI10.1090/S0002-9947-1988-0936815-X
  12. Ha, K.Y., Lee, J.B., 10.1002/mana.200610777, Math. Nachr., 282, 6, 2009, 868-898, (2009) Zbl1172.22006MR2530885DOI10.1002/mana.200610777
  13. Ha, K.Y., Lee, J.B., 10.1016/j.geomphys.2011.10.011, J. Geom. Phys., 62, 2, 2012, 189-203, (2012) Zbl1247.22012MR2864471DOI10.1016/j.geomphys.2011.10.011
  14. Hamenst{ä}dt, U., 10.4310/jdg/1214445536, J. Differential Geom., 32, 3, 1990, 819-850, (1990) Zbl0687.53041MR1078163DOI10.4310/jdg/1214445536
  15. Jurdjevic, V., Geometric control theory, 1997, Cambridge University Press, Cambridge, (1997) Zbl0940.93005MR1425878
  16. Kishimoto, I., 10.1215/kjm/1250283693, J. Math. Kyoto Univ., 43, 3, 2003, 509-522, (2003) Zbl1060.53039MR2028665DOI10.1215/kjm/1250283693
  17. Kivioja, V., Donne, E. Le, 10.5802/jep.48, J. Éc. Polytech. Math., 4, 2017, 473-482, (2017) Zbl1369.22006MR3646026DOI10.5802/jep.48
  18. Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W., 10.1023/A:1022382202778, Gen. Relativity Gravitation, 35, 3, 2003, 475-489, (2003) Zbl1016.83004MR1964375DOI10.1023/A:1022382202778
  19. Donne, E. Le, Ottazzi, A., 10.1007/s12220-014-9552-8, J. Geom. Anal., 26, 1, 2016, 330-345, (2016) Zbl1343.53029MR3441517DOI10.1007/s12220-014-9552-8
  20. Milnor, J., Curvatures of left invariant metrics on Lie groups, Advances in Math., 21, 3, 1976, 293-329, (1976) Zbl0341.53030MR0425012
  21. Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, 2002, American Mathematical Society, Providence, RI, (2002) Zbl1044.53022MR1867362
  22. Mubarakzyanov, G.M., On solvable Lie algebras, Izv. Vysš. Učehn. Zaved. Matematika, 1963, 114-123, In Russian. (1963) Zbl0166.04104MR0153714
  23. Patrangenaru, V., 10.2140/pjm.1996.173.511, Pacific J. Math., 173, 2, 1996, 511-532, (1996) Zbl0866.53035MR1394403DOI10.2140/pjm.1996.173.511
  24. Petersen, P., Riemannian geometry, 2006, Springer, New York, 2nd ed.. (2006) Zbl1220.53002MR2243772
  25. Shin, J., 10.1023/A:1004957320982, Geom. Dedicata, 65, 3, 1997, 267-290, (1997) Zbl0909.53036MR1451979DOI10.1023/A:1004957320982
  26. {Š}nobl, L., Winternitz, P., Classification and identification of Lie algebras, 2014, American Mathematical Society, Providence, RI, (2014) Zbl1331.17001MR3184730
  27. Strichartz, R.S., 10.4310/jdg/1214440436, J. Differential Geom., 24, 2, 1986, 221-263, (1986) Zbl0609.53021MR0862049DOI10.4310/jdg/1214440436
  28. Vershik, A.M., Gershkovich, V.Y., Nonholonomic dynamical systems, geometry of distributions and variational problems, V.I. Arnol'd, S.P. Novikov (eds.), Dynamical systems VII, 1994, pp. 1-81, Springer, Berlin, (1994) MR0922070
  29. Wilson, E.N., 10.1007/BF00147318, Geom. Dedicata, 12, 3, 1982, 337-346, (1982) Zbl0489.53045MR0661539DOI10.1007/BF00147318

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.