Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups
Communications in Mathematics (2017)
- Volume: 25, Issue: 2, page 99-135
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBiggs, Rory. "Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups." Communications in Mathematics 25.2 (2017): 99-135. <http://eudml.org/doc/294613>.
@article{Biggs2017,
abstract = {We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.},
author = {Biggs, Rory},
journal = {Communications in Mathematics},
keywords = {Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups},
language = {eng},
number = {2},
pages = {99-135},
publisher = {University of Ostrava},
title = {Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups},
url = {http://eudml.org/doc/294613},
volume = {25},
year = {2017},
}
TY - JOUR
AU - Biggs, Rory
TI - Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 2
SP - 99
EP - 135
AB - We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.
LA - eng
KW - Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups
UR - http://eudml.org/doc/294613
ER -
References
top- Agrachev, A., Barilari, D., 10.1007/s10883-012-9133-8, J. Dyn. Control Syst., 18, 1, 2012, 21-44, (2012) Zbl1244.53039MR2902707DOI10.1007/s10883-012-9133-8
- Alekseevskiĭ, D.V., The conjugacy of polar decompositions of Lie groups, Mat. Sb. (N.S.), 84, 126, 1971, 14-26, (1971) MR0277662
- Alekseevskiĭ, D.V., Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.), 138, 1, 1975, 93-117, (1975) MR0362145
- Bellaïche, A., The tangent space in sub-Riemannian geometry, A. Bellaïche, J.J. Risler (eds.), Sub-Riemannian geometry, 1996, 1-78, Birkhäuser, Basel, (1996) Zbl0862.53031MR1421822
- Biggs, R., Nagy, P. T., 10.1007/s10883-016-9316-9, J. Dyn. Control Syst., 22, 3, 2016, 563-594, (2016) Zbl1347.53029MR3517618DOI10.1007/s10883-016-9316-9
- Biggs, R., Remsing, C.C., On the classification of real four-dimensional Lie groups, J. Lie Theory, 26, 4, 2016, 1001-1035, (2016) Zbl1356.22008MR3487553
- Biggs, R., Remsing, C.C., 10.1007/s10440-016-0074-1, Acta Appl. Math., 148, 2017, 1-59, (2017) MR3621290DOI10.1007/s10440-016-0074-1
- Biggs, R., Remsing, C.C., Invariant control systems on Lie groups, G. Falcone (ed.), Lie groups, differential equations, and geometry: advances and surveys, 2017, 127-181, Springer, (2017) MR3726533
- Capogna, L., Donne, E. Le, 10.1353/ajm.2016.0043, Amer. J. Math., 138, 5, 2016, 1439-1454, (2016) Zbl1370.53030MR3553396DOI10.1353/ajm.2016.0043
- Gordon, C., 10.1007/BF01421956, Math. Ann., 248, 2, 1980, 185-192, (1980) Zbl0412.53026MR0573347DOI10.1007/BF01421956
- Gordon, C.S., Wilson, E.N., 10.1090/S0002-9947-1988-0936815-X, Trans. Amer. Math. Soc., 307, 1, 1988, 245-269, (1988) Zbl0664.53022MR0936815DOI10.1090/S0002-9947-1988-0936815-X
- Ha, K.Y., Lee, J.B., 10.1002/mana.200610777, Math. Nachr., 282, 6, 2009, 868-898, (2009) Zbl1172.22006MR2530885DOI10.1002/mana.200610777
- Ha, K.Y., Lee, J.B., 10.1016/j.geomphys.2011.10.011, J. Geom. Phys., 62, 2, 2012, 189-203, (2012) Zbl1247.22012MR2864471DOI10.1016/j.geomphys.2011.10.011
- Hamenst{ä}dt, U., 10.4310/jdg/1214445536, J. Differential Geom., 32, 3, 1990, 819-850, (1990) Zbl0687.53041MR1078163DOI10.4310/jdg/1214445536
- Jurdjevic, V., Geometric control theory, 1997, Cambridge University Press, Cambridge, (1997) Zbl0940.93005MR1425878
- Kishimoto, I., 10.1215/kjm/1250283693, J. Math. Kyoto Univ., 43, 3, 2003, 509-522, (2003) Zbl1060.53039MR2028665DOI10.1215/kjm/1250283693
- Kivioja, V., Donne, E. Le, 10.5802/jep.48, J. Éc. Polytech. Math., 4, 2017, 473-482, (2017) Zbl1369.22006MR3646026DOI10.5802/jep.48
- Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W., 10.1023/A:1022382202778, Gen. Relativity Gravitation, 35, 3, 2003, 475-489, (2003) Zbl1016.83004MR1964375DOI10.1023/A:1022382202778
- Donne, E. Le, Ottazzi, A., 10.1007/s12220-014-9552-8, J. Geom. Anal., 26, 1, 2016, 330-345, (2016) Zbl1343.53029MR3441517DOI10.1007/s12220-014-9552-8
- Milnor, J., Curvatures of left invariant metrics on Lie groups, Advances in Math., 21, 3, 1976, 293-329, (1976) Zbl0341.53030MR0425012
- Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, 2002, American Mathematical Society, Providence, RI, (2002) Zbl1044.53022MR1867362
- Mubarakzyanov, G.M., On solvable Lie algebras, Izv. Vysš. Učehn. Zaved. Matematika, 1963, 114-123, In Russian. (1963) Zbl0166.04104MR0153714
- Patrangenaru, V., 10.2140/pjm.1996.173.511, Pacific J. Math., 173, 2, 1996, 511-532, (1996) Zbl0866.53035MR1394403DOI10.2140/pjm.1996.173.511
- Petersen, P., Riemannian geometry, 2006, Springer, New York, 2nd ed.. (2006) Zbl1220.53002MR2243772
- Shin, J., 10.1023/A:1004957320982, Geom. Dedicata, 65, 3, 1997, 267-290, (1997) Zbl0909.53036MR1451979DOI10.1023/A:1004957320982
- {Š}nobl, L., Winternitz, P., Classification and identification of Lie algebras, 2014, American Mathematical Society, Providence, RI, (2014) Zbl1331.17001MR3184730
- Strichartz, R.S., 10.4310/jdg/1214440436, J. Differential Geom., 24, 2, 1986, 221-263, (1986) Zbl0609.53021MR0862049DOI10.4310/jdg/1214440436
- Vershik, A.M., Gershkovich, V.Y., Nonholonomic dynamical systems, geometry of distributions and variational problems, V.I. Arnol'd, S.P. Novikov (eds.), Dynamical systems VII, 1994, pp. 1-81, Springer, Berlin, (1994) MR0922070
- Wilson, E.N., 10.1007/BF00147318, Geom. Dedicata, 12, 3, 1982, 337-346, (1982) Zbl0489.53045MR0661539DOI10.1007/BF00147318
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.