Gaussian approximation for functionals of Gibbs particle processes
Kybernetika (2018)
- Volume: 54, Issue: 4, page 765-777
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFlimmel, Daniela, and Beneš, Viktor. "Gaussian approximation for functionals of Gibbs particle processes." Kybernetika 54.4 (2018): 765-777. <http://eudml.org/doc/294627>.
@article{Flimmel2018,
abstract = {In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space $\mathbb \{R\}^d$ are extended to the space of compact sets on $\mathbb \{R\}^d$ equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.},
author = {Flimmel, Daniela, Beneš, Viktor},
journal = {Kybernetika},
keywords = {asymptotics of functionals; innovation; stationary Gibbs particle process; Wasserstein distance},
language = {eng},
number = {4},
pages = {765-777},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Gaussian approximation for functionals of Gibbs particle processes},
url = {http://eudml.org/doc/294627},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Flimmel, Daniela
AU - Beneš, Viktor
TI - Gaussian approximation for functionals of Gibbs particle processes
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 765
EP - 777
AB - In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space $\mathbb {R}^d$ are extended to the space of compact sets on $\mathbb {R}^d$ equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.
LA - eng
KW - asymptotics of functionals; innovation; stationary Gibbs particle process; Wasserstein distance
UR - http://eudml.org/doc/294627
ER -
References
top- Beneš, V., Večeřa, J., Pultar, M., 10.1007/s11009-017-9608-x, Methodol. Comput. Appl. Probab. (2018), accepted. DOI10.1007/s11009-017-9608-x
- Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E., , Preprint (2018), submitted to the Annals of Probab. DOI
- Daley, D. J., Vere-Jones, D., An Introduction to the Theory of Point Processes., Volume I: Elementary Theory and Methods. MR1950431
- Dereudre, D., , Preprint (2017), submitted. DOI
- Georgii, H.-O., 10.1515/9783110250329, W. de Gruyter and Co., Berlin 2011. MR2807681DOI10.1515/9783110250329
- Last, G., Penrose, M., 10.1017/9781316104477, Cambridge University Press, Cambridge 2017. MR3791470DOI10.1017/9781316104477
- Mase, S., 10.1002/(sici)1522-2616(200001)209:1<151::aid-mana151>3.0.co;2-j, Math. Nachr. 209 (2000), 151-169. MR1734363DOI10.1002/(sici)1522-2616(200001)209:1<151::aid-mana151>3.0.co;2-j
- Ruelle, D., 10.1007/bf01646091, Commun. Math. Phys. 18 (1970), 127-159. MR0266565DOI10.1007/bf01646091
- Schneider, R., Weil, W., 10.1007/978-3-540-78859-1, Springer, Berlin 2008. Zbl1175.60003MR2455326DOI10.1007/978-3-540-78859-1
- Schreiber, T., Yukich, J. E., 10.1214/12-aihp500, Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182. MR3127918DOI10.1214/12-aihp500
- Serra, J., 10.1002/cyto.990040213, Academic Press, London 1982. MR0753649DOI10.1002/cyto.990040213
- Stucki, K., Schuhmacher, D., 10.1239/aap/1396360101, Adv. Appl. Probab. 46 (2014), 21-34. MR3189046DOI10.1239/aap/1396360101
- Torrisi, G. L., 10.3150/16-bej808, Bernoulli 23 (2017), 2210-2256. MR3648030DOI10.3150/16-bej808
- Večeřa, J., Beneš, V., 10.1016/j.spl.2016.10.024, Statist. Probab. Let. 122 (2017), 51-57. MR3584137DOI10.1016/j.spl.2016.10.024
- Xia, A., Yukich, J. E., 10.1017/s0001867800048965, Adv. Appl. Probab. 25 (2015), 934-972. MR3433291DOI10.1017/s0001867800048965
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.