(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras

Chao Wang; Xiao Yan Yang

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1031-1048
  • ISSN: 0011-4642

Abstract

top
Let Λ = A M 0 B be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective Λ -modules under the condition that M is a cocompatible ( A , B ) -bimodule, we establish a recollement of the stable category Ginj ( Λ ) ¯ . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over Λ .

How to cite

top

Wang, Chao, and Yang, Xiao Yan. "(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras." Czechoslovak Mathematical Journal 67.4 (2017): 1031-1048. <http://eudml.org/doc/294630>.

@article{Wang2017,
abstract = {Let $\Lambda =\left(\{\{\textstyle \begin\{matrix\} A&M\\ 0&B \end\{matrix\}\}\}\right)$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline\{\rm Ginj(\Lambda )\}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.},
author = {Wang, Chao, Yang, Xiao Yan},
journal = {Czechoslovak Mathematical Journal},
keywords = {(strongly) Gorenstein injective module; upper triangular matrix Artin algebra; triangulated category; recollement},
language = {eng},
number = {4},
pages = {1031-1048},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras},
url = {http://eudml.org/doc/294630},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Wang, Chao
AU - Yang, Xiao Yan
TI - (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1031
EP - 1048
AB - Let $\Lambda =\left({{\textstyle \begin{matrix} A&M\\ 0&B \end{matrix}}}\right)$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline{\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.
LA - eng
KW - (strongly) Gorenstein injective module; upper triangular matrix Artin algebra; triangulated category; recollement
UR - http://eudml.org/doc/294630
ER -

References

top
  1. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13, Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
  2. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  3. Beligiannis, A., 10.1016/j.aim.2010.09.006, Adv. Math. 226 (2011), 1973-2019. (2011) Zbl1239.16016MR2737805DOI10.1016/j.aim.2010.09.006
  4. Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
  5. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  6. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  7. Gao, N., Zhang, P., 10.1080/00927870902828934, Commun. Algebra 37 (2009), 4259-4268. (2009) Zbl1220.16013MR2588847DOI10.1080/00927870902828934
  8. Happel, D., 10.1017/CBO9780511629228, London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). (1988) Zbl0635.16017MR0935124DOI10.1017/CBO9780511629228
  9. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  10. Wang, C., 10.6040/j.issn.1671-9352.0.2015.235, J. Shandong Univ., Nat. Sci. 51 (2016), 89-93 Chinese. (2016) Zbl06634874MR3467852DOI10.6040/j.issn.1671-9352.0.2015.235
  11. Yang, X., Liu, Z., 10.1016/j.jalgebra.2008.07.006, J. Algebra 320 (2008), 2659-2674. (2008) Zbl1173.16006MR2441993DOI10.1016/j.jalgebra.2008.07.006
  12. Zhang, P., 10.1016/j.jalgebra.2013.05.008, J. Algebra 388 (2013), 65-80. (2013) Zbl06266167MR3061678DOI10.1016/j.jalgebra.2013.05.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.