(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1031-1048
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Chao, and Yang, Xiao Yan. "(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras." Czechoslovak Mathematical Journal 67.4 (2017): 1031-1048. <http://eudml.org/doc/294630>.
@article{Wang2017,
abstract = {Let $\Lambda =\left(\{\{\textstyle \begin\{matrix\} A&M\\ 0&B \end\{matrix\}\}\}\right)$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline\{\rm Ginj(\Lambda )\}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.},
author = {Wang, Chao, Yang, Xiao Yan},
journal = {Czechoslovak Mathematical Journal},
keywords = {(strongly) Gorenstein injective module; upper triangular matrix Artin algebra; triangulated category; recollement},
language = {eng},
number = {4},
pages = {1031-1048},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras},
url = {http://eudml.org/doc/294630},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Wang, Chao
AU - Yang, Xiao Yan
TI - (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1031
EP - 1048
AB - Let $\Lambda =\left({{\textstyle \begin{matrix} A&M\\ 0&B \end{matrix}}}\right)$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline{\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.
LA - eng
KW - (strongly) Gorenstein injective module; upper triangular matrix Artin algebra; triangulated category; recollement
UR - http://eudml.org/doc/294630
ER -
References
top- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13, Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
- Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
- Beligiannis, A., 10.1016/j.aim.2010.09.006, Adv. Math. 226 (2011), 1973-2019. (2011) Zbl1239.16016MR2737805DOI10.1016/j.aim.2010.09.006
- Bennis, D., Mahdou, N., 10.1016/j.jpaa.2006.10.010, J. Pure Appl. Algebra 210 (2007), 437-445. (2007) Zbl1118.13014MR2320007DOI10.1016/j.jpaa.2006.10.010
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Gao, N., Zhang, P., 10.1080/00927870902828934, Commun. Algebra 37 (2009), 4259-4268. (2009) Zbl1220.16013MR2588847DOI10.1080/00927870902828934
- Happel, D., 10.1017/CBO9780511629228, London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). (1988) Zbl0635.16017MR0935124DOI10.1017/CBO9780511629228
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Wang, C., 10.6040/j.issn.1671-9352.0.2015.235, J. Shandong Univ., Nat. Sci. 51 (2016), 89-93 Chinese. (2016) Zbl06634874MR3467852DOI10.6040/j.issn.1671-9352.0.2015.235
- Yang, X., Liu, Z., 10.1016/j.jalgebra.2008.07.006, J. Algebra 320 (2008), 2659-2674. (2008) Zbl1173.16006MR2441993DOI10.1016/j.jalgebra.2008.07.006
- Zhang, P., 10.1016/j.jalgebra.2013.05.008, J. Algebra 388 (2013), 65-80. (2013) Zbl06266167MR3061678DOI10.1016/j.jalgebra.2013.05.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.