On the Infinite Loch Ness monster

John A. Arredondo; Camilo Ramírez Maluendas

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 4, page 465-479
  • ISSN: 0010-2628

Abstract

top
In this paper we introduce the topological surface called {Infinite Loch Ness monster}, discussing how this name has evolved and how it has been historically understood. We give two constructions of this surface, one of them having translation structure and the other hyperbolic structure.

How to cite

top

Arredondo, John A., and Ramírez Maluendas, Camilo. "On the Infinite Loch Ness monster." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 465-479. <http://eudml.org/doc/294631>.

@article{Arredondo2017,
abstract = {In this paper we introduce the topological surface called \{Infinite Loch Ness monster\}, discussing how this name has evolved and how it has been historically understood. We give two constructions of this surface, one of them having translation structure and the other hyperbolic structure.},
author = {Arredondo, John A., Ramírez Maluendas, Camilo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Infinite Loch Ness monster; tame Infinite Loch Ness monster; hyperbolic Infinite Loch Ness monster},
language = {eng},
number = {4},
pages = {465-479},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Infinite Loch Ness monster},
url = {http://eudml.org/doc/294631},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Arredondo, John A.
AU - Ramírez Maluendas, Camilo
TI - On the Infinite Loch Ness monster
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 465
EP - 479
AB - In this paper we introduce the topological surface called {Infinite Loch Ness monster}, discussing how this name has evolved and how it has been historically understood. We give two constructions of this surface, one of them having translation structure and the other hyperbolic structure.
LA - eng
KW - Infinite Loch Ness monster; tame Infinite Loch Ness monster; hyperbolic Infinite Loch Ness monster
UR - http://eudml.org/doc/294631
ER -

References

top
  1. Abikoff W., The uniformization theorem, Amer. Math. Monthly 88 (1981), no. 8, 574–592. Zbl0482.30034MR0628026
  2. Arredondo J.A., Ramírez Maluendas C., On infinitely generated Fuchsian groups of some infinite genus surfaces, preliminary manuscript. 
  3. Arredondo J.A., Ramírez Maluendas C., Valdez F., 10.1016/j.disc.2016.12.023, Discrete Math. 340 (2017), no. 6, 1180–1186. Zbl1369.05101MR3624603DOI10.1016/j.disc.2016.12.023
  4. Beardon A.F., A Premier on Riemann Surfaces, London Mathematical Society Lecture Note Series, 78, Cambridge University Press, Cambridge, 1984. MR1238511
  5. Cantwell J., Conlon L., Leaf prescriptions for closed 3 -manifolds, Trans. Amer. Math. Soc. 236 (1978), 239–261. Zbl0398.57009MR0645738
  6. Cantwell J., Conlon L., 10.1016/0040-9383(77)90038-6, Topology 16 (1977), no. 4, 311–322. Zbl0385.57007MR0645739DOI10.1016/0040-9383(77)90038-6
  7. Conway J.H., Burgiel H., Goodman-Strauss C., The Symmetries of Things, A K Peters, Ltd., Wellesley, Massachusetts, 2008. Zbl1173.00001MR2410150
  8. Coxeter H.S.M., Regular skew polyhedra in three and four dimension, and their topological analogues, Proc. London Math. Soc. (2) 43 (1937), no. 1, 33–62. MR1575418
  9. Fox R.H., Kershner R.B., 10.1215/S0012-7094-36-00213-2, Duke Math. J. 2 (1936), no. 1, 147–150. Zbl0014.03401MR1545913DOI10.1215/S0012-7094-36-00213-2
  10. Ghys É., 10.2307/2118526, Ann. of Math. (2) 141 (1995), no. 2, 387–422. Zbl0843.57026MR1324140DOI10.2307/2118526
  11. Hilbert D., 10.1090/S0273-0979-00-00881-8, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 407–436; reprinted from Bull. Amer. Math. Soc. 8 (1902), 437–479. Zbl0979.01028MR1779412DOI10.1090/S0273-0979-00-00881-8
  12. Hubert P., Schmidt T.A., An introduction to Veech surfaces, Handbook of dynamical systems, 1B, Elsevier B.V., Amsterdam, 2006, pp. 501–526. Zbl1130.37367MR2186246
  13. Katok S., Fuchsian Groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Zbl1243.37029MR1177168
  14. Katok A.B., Zemljakov A.N., Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975), no. 2, 291–300 (Russian). MR0399423
  15. Kerckhoff S., Masur H., Smillie J., 10.2307/1971280, Ann. of Math. 124 (1986), no. 2, 293–311. Zbl0637.58010MR0855297DOI10.2307/1971280
  16. Kerékjártó B., Vorlesungen über Topologie I, Mathematics: Theory & Applications, Springer, Berlin, 1923. 
  17. Kontsevich M., Zorich A., 10.1007/s00222-003-0303-x, Invent. Math. 153 (2003), no. 3, 631–678. MR2000471DOI10.1007/s00222-003-0303-x
  18. Loxton J.H., Captain Cook and the Loch Ness Monster, James Cook Mathematical Notes 27 (1981), no. 3, 3060–3064. 
  19. Loxton J.H., 10.1112/S0025579300010500, Mathematika 30 (1983), no. 2, 153–163. Zbl0517.10040MR0737174DOI10.1112/S0025579300010500
  20. Maskit B., Kleinian Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 287, Springer, Berlin, 1988. Zbl0940.30022MR0959135
  21. Masur H., Tabachnikov S., Rational billiards and flat structures, Handbook of dynamical systems, 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. Zbl1057.37034MR1928530
  22. Möller M., 10.1007/s00222-006-0510-3, Invent. Math. 165 (2006), 633–649. Zbl1111.14019MR2242629DOI10.1007/s00222-006-0510-3
  23. Muciño-Raymundo J., Superficies de Riemann y Uniformización, http://www.matmor.unam.mx/~muciray/articulos/Superficies_de_Riemann.pdf. 
  24. Nishimori T., 10.1093/qmath/26.1.159, Quart. J. Math. 26 (1975), no. 1, 159–167. Zbl0303.57012MR0377927DOI10.1093/qmath/26.1.159
  25. Phillips A., Sullivan D., 10.1016/0040-9383(81)90039-2, Topology 20 (1981), no. 2, 209–218. Zbl0454.57016MR0605659DOI10.1016/0040-9383(81)90039-2
  26. Przytycki P., Schmithüsen G., Valdez F., 10.5802/aif.2625, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 2, 673–687. Zbl1266.32016MR2895069DOI10.5802/aif.2625
  27. Ramírez Maluendas C., Valdez F., 10.2140/agt.2017.17.529, Algebr. Geom. Topol. 17 (2017), no. 1, 529–560. MR3604384DOI10.2140/agt.2017.17.529
  28. Richards I., 10.1090/S0002-9947-1963-0143186-0, Trans. Amer. Math. Soc. 106 (1963), 259–269. Zbl0156.22203MR0143186DOI10.1090/S0002-9947-1963-0143186-0
  29. Sondow J., 10.1090/S0002-9904-1975-13764-5, Bull. Amer. Math. Soc. 81 (1975), no. 3, 622–624. Zbl0309.57012MR0365591DOI10.1090/S0002-9904-1975-13764-5
  30. Specker E., 10.1007/BF02565606, Comment. Math. Helv. 23 (1949), 303–333. Zbl0036.12803MR0033520DOI10.1007/BF02565606
  31. Spivak M., A comprehensive introduction to differential geometry, Vol. I, second edition, Publish or Perish, Inc., Wilmington, Del., 1979. Zbl0439.53001MR0532834
  32. Steuart C., The Loch Ness Monster: The Evidence, Prometheus Books, USA, 1997. 
  33. Valdez F., 10.1007/s10711-009-9378-x, Geom. Dedicata 143 (2009), 143–154. Zbl1190.37040MR2576299DOI10.1007/s10711-009-9378-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.