The multiplier for the weak McShane integral

Redouane Sayyad

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 1, page 13-24
  • ISSN: 0862-7959

Abstract

top
The multiplier for the weak McShane integral which has been introduced by M. Saadoune and R. Sayyad (2014) is characterized.

How to cite

top

Sayyad, Redouane. "The multiplier for the weak McShane integral." Mathematica Bohemica 144.1 (2019): 13-24. <http://eudml.org/doc/294632>.

@article{Sayyad2019,
abstract = {The multiplier for the weak McShane integral which has been introduced by M. Saadoune and R. Sayyad (2014) is characterized.},
author = {Sayyad, Redouane},
journal = {Mathematica Bohemica},
keywords = {McShane integral; weak McShane integral; multiplier},
language = {eng},
number = {1},
pages = {13-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The multiplier for the weak McShane integral},
url = {http://eudml.org/doc/294632},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Sayyad, Redouane
TI - The multiplier for the weak McShane integral
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 13
EP - 24
AB - The multiplier for the weak McShane integral which has been introduced by M. Saadoune and R. Sayyad (2014) is characterized.
LA - eng
KW - McShane integral; weak McShane integral; multiplier
UR - http://eudml.org/doc/294632
ER -

References

top
  1. Piazza, L. Di, Marraffa, V., 10.4064/sm151-2-5, Stud. Math. 151 (2002), 175-185. (2002) Zbl1005.28009MR1917952DOI10.4064/sm151-2-5
  2. Dunford, N., Pettis, B. J., 10.2307/1989960, Trans. Am. Math. Soc. 47 (1940), 323-392. (1940) Zbl0023.32902MR0002020DOI10.2307/1989960
  3. Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
  4. Fremlin, D. H., Measure Theory. Vol. 2. Broad Foundations, Torres Fremlin, Colchester (2003). (2003) Zbl1165.28001MR2462280
  5. Fremlin, D. H., Measure Theory. Vol. 4. Topological Measure Spaces. Part I, II, Torres Fremlin, Colchester (2006). (2006) Zbl1166.28001MR2462372
  6. Geitz, R. F., 10.2307/2044321, Proc. Am. Math. Soc. 82 (1981), 81-86. (1981) Zbl0506.28007MR0603606DOI10.2307/2044321
  7. Hewitt, E., Stromberg, K., 10.1007/978-3-642-88047-6, Graduate Texts in Mathematics 25. Springer, New York (1965). (1965) Zbl0137.03202MR0188387DOI10.1007/978-3-642-88047-6
  8. Musiał, K., Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. (1987) Zbl0636.28005MR0922998
  9. Saadoune, M., Sayyad, R., 10.1007/s10587-014-0108-7, Czech. Math. J. 64 (2014), 387-418. (2014) Zbl1340.28016MR3277743DOI10.1007/s10587-014-0108-7
  10. Sayyad, R., 10.14321/realanalexch.42.2.0283, Real Anal. Exch. 42 (2017), 283-310. (2017) MR3721803DOI10.14321/realanalexch.42.2.0283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.