Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators
Mathematica Bohemica (2019)
- Volume: 144, Issue: 1, page 69-83
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topErtürk, Müzeyyen, and Gürsoy, Faik. "Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators." Mathematica Bohemica 144.1 (2019): 69-83. <http://eudml.org/doc/294646>.
@article{Ertürk2019,
abstract = {We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.},
author = {Ertürk, Müzeyyen, Gürsoy, Faik},
journal = {Mathematica Bohemica},
keywords = {iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators},
url = {http://eudml.org/doc/294646},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Ertürk, Müzeyyen
AU - Gürsoy, Faik
TI - Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 69
EP - 83
AB - We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.
LA - eng
KW - iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency
UR - http://eudml.org/doc/294646
ER -
References
top- Akewe, H., Okeke, G. A., 10.1186/s13663-015-0315-4, Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages. (2015) Zbl1312.47078MR3343141DOI10.1186/s13663-015-0315-4
- Berinde, V., 10.1155/S1687182004311058, Fixed Point Theory Appl. 2004 (2004), 97-105. (2004) Zbl1090.47053MR2086709DOI10.1155/S1687182004311058
- Berinde, V., 10.1007/978-3-540-72234-2, Lecture Notes in Mathematics 1912. Springer, Berlin (2007). (2007) Zbl1165.47047MR2323613DOI10.1007/978-3-540-72234-2
- Berinde, V., On a notion of rapidity of convergence used in the study of fixed point iterative methods, Creat. Math. Inform. 25 (2016), 29-40. (2016) Zbl06762010MR3558671
- Berinde, V., Păcurar, M., A fixed point proof of the convergence of a Newton-type method, Fixed Point Theory 7 (2006), 235-244. (2006) Zbl1115.65053MR2284596
- Bosede, A. O., Rhoades, B. E., Stability of Picard and Mann iteration for a general class of functions, J. Adv. Math. Stud. 3 (2010), 23-25. (2010) Zbl1210.47093MR2722440
- Chidume, C. E., Olaleru, J. O., Picard iteration process for a general class of contractive mappings, J. Niger. Math. Soc. 33 (2014), 19-23. (2014) Zbl1341.47079MR3235868
- Fukhar-ud-din, H., Berinde, V., 10.2298/FIL1601223F, Filomat 30 (2016), 223-230. (2016) Zbl06749677MR3498766DOI10.2298/FIL1601223F
- Gürsoy, F., 10.2298/FIL1610829G, Filomat 30 (2016), 2829-2845. (2016) Zbl06749928MR3583408DOI10.2298/FIL1610829G
- Gürsoy, F., Karakaya, V., A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, Avaible at https://arxiv.org/abs/1403.2546 (2014), 16 pages. (2014)
- Gürsoy, F., Karakaya, V., Rhoades, B. E., 10.1186/1687-1812-2013-76, Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages. (2013) Zbl06282865MR3047130DOI10.1186/1687-1812-2013-76
- Gürsoy, F., Khan, A. R., Fukhar-ud-din, H., 10.15672/HJMS.20174720334, Hacet. J. Math. Stat. 46 (2017), 373-388. (2017) Zbl06810307MR36991880DOI10.15672/HJMS.20174720334
- Haghi, R. H., Postolache, M., Rezapour, S., 10.1155/2012/658971, Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages. (2012) Zbl1252.54035MR2965457DOI10.1155/2012/658971
- Harder, A. M., Hicks, T. L., Stability results for fixed point iteration procedures, Math. Jap. 33 (1988), 693-706. (1988) Zbl0655.47045MR0972379
- Ishikawa, S., 10.2307/2039245, Proc. Am. Math. Soc. 44 (1974), 147-150. (1974) Zbl0286.47036MR0336469DOI10.2307/2039245
- Karakaya, V., Doğan, K., Gürsoy, F., Ertürk, M., 10.1155/2013/560258, Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages. (2013) Zbl1364.47026MR3147859DOI10.1155/2013/560258
- Karakaya, V., Gürsoy, F., Ertürk, M., Some convergence and data dependence results for various fixed point iterative methods, Kuwait J. Sci. 43 (2016), 112-128. (2016) MR3496310
- Khan, S. H., 10.1186/1687-1812-2013-69, Fixed Point Theory Appl. 2013 (2013), Paper No. 69, 10 pages. (2013) Zbl1317.47065MR3053809DOI10.1186/1687-1812-2013-69
- Khan, A. R., Gürsoy, F., Karakaya, V., 10.1080/00207160.2015.1085030, Int. J. Comput. Math. 93 (2016), 2092-2105. (2016) Zbl06679732MR3576658DOI10.1080/00207160.2015.1085030
- Khan, A. R., Gürsoy, F., Kumar, V., 10.3906/mat-1503-1, Turkish J. Math. 40 (2016), 631-640. (2016) MR3486126DOI10.3906/mat-1503-1
- Khan, A. R., Kumar, V., Hussain, N., 10.1016/j.amc.2013.12.150, Appl. Math. Comput. 231 (2014), 521-535. (2014) MR3174051DOI10.1016/j.amc.2013.12.150
- Mann, W. R., 10.2307/2032162, Proc. Am. Math. Soc. 4 (1953), 506-510. (1953) Zbl0050.11603MR0054846DOI10.2307/2032162
- Okeke, G. A., Kim, J. K., 10.1186/s13660-015-0815-0, J. Inequal. Appl. 2015 (2015), Paper No. 290, 14 pages. (2015) Zbl1351.47051MR3399253DOI10.1186/s13660-015-0815-0
- Olatinwo, M. O., Postolache, M., 10.1016/j.amc.2011.12.038, Appl. Math. Comput. 218 (2012), 6727-6732. (2012) Zbl1293.54033MR2880328DOI10.1016/j.amc.2011.12.038
- Phuengrattana, W., Suantai, S., Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces, Thai J. Math. 11 (2013), 217-226. (2013) Zbl1294.47090MR3065435
- Picard, E., Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, Journ. de Math. (4) 6 (1890), 145-210 French 9999JFM99999 22.0357.02. (1890)
- Sahu, D. R., Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), 187-204. (2011) Zbl1281.47053MR2797080
- Scherzer, O., 10.1006/jmaa.1995.1335, J. Math. Anal. Appl. 194 (1995), 911-933. (1995) Zbl0842.65036MR1350202DOI10.1006/jmaa.1995.1335
- Şoltuz, Ş. M., Grosan, T., 10.1155/2008/242916, Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages. (2008) Zbl1205.47059MR2415408DOI10.1155/2008/242916
- Xu, B., Noor, M. A., 10.1006/jmaa.2001.7649, J. Math. Anal. Appl. 267 (2002), 444-453. (2002) Zbl1011.47039MR1888015DOI10.1006/jmaa.2001.7649
- Yildirim, I., Abbas, M., Karaca, N., 10.22436/jnsa.009.06.27, J. Nonlinear Sci. Appl. 9 (2016), 3773-3786. (2016) Zbl1350.47050MR3517127DOI10.22436/jnsa.009.06.27
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.