Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators

Müzeyyen Ertürk; Faik Gürsoy

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 1, page 69-83
  • ISSN: 0862-7959

Abstract

top
We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.

How to cite

top

Ertürk, Müzeyyen, and Gürsoy, Faik. "Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators." Mathematica Bohemica 144.1 (2019): 69-83. <http://eudml.org/doc/294646>.

@article{Ertürk2019,
abstract = {We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.},
author = {Ertürk, Müzeyyen, Gürsoy, Faik},
journal = {Mathematica Bohemica},
keywords = {iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency},
language = {eng},
number = {1},
pages = {69-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators},
url = {http://eudml.org/doc/294646},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Ertürk, Müzeyyen
AU - Gürsoy, Faik
TI - Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 69
EP - 83
AB - We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.
LA - eng
KW - iteration method; quasi-strictly contractive operator; convergence; rate of convergence; stability; data dependency
UR - http://eudml.org/doc/294646
ER -

References

top
  1. Akewe, H., Okeke, G. A., 10.1186/s13663-015-0315-4, Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages. (2015) Zbl1312.47078MR3343141DOI10.1186/s13663-015-0315-4
  2. Berinde, V., 10.1155/S1687182004311058, Fixed Point Theory Appl. 2004 (2004), 97-105. (2004) Zbl1090.47053MR2086709DOI10.1155/S1687182004311058
  3. Berinde, V., 10.1007/978-3-540-72234-2, Lecture Notes in Mathematics 1912. Springer, Berlin (2007). (2007) Zbl1165.47047MR2323613DOI10.1007/978-3-540-72234-2
  4. Berinde, V., On a notion of rapidity of convergence used in the study of fixed point iterative methods, Creat. Math. Inform. 25 (2016), 29-40. (2016) Zbl06762010MR3558671
  5. Berinde, V., Păcurar, M., A fixed point proof of the convergence of a Newton-type method, Fixed Point Theory 7 (2006), 235-244. (2006) Zbl1115.65053MR2284596
  6. Bosede, A. O., Rhoades, B. E., Stability of Picard and Mann iteration for a general class of functions, J. Adv. Math. Stud. 3 (2010), 23-25. (2010) Zbl1210.47093MR2722440
  7. Chidume, C. E., Olaleru, J. O., Picard iteration process for a general class of contractive mappings, J. Niger. Math. Soc. 33 (2014), 19-23. (2014) Zbl1341.47079MR3235868
  8. Fukhar-ud-din, H., Berinde, V., 10.2298/FIL1601223F, Filomat 30 (2016), 223-230. (2016) Zbl06749677MR3498766DOI10.2298/FIL1601223F
  9. Gürsoy, F., 10.2298/FIL1610829G, Filomat 30 (2016), 2829-2845. (2016) Zbl06749928MR3583408DOI10.2298/FIL1610829G
  10. Gürsoy, F., Karakaya, V., A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, Avaible at https://arxiv.org/abs/1403.2546 (2014), 16 pages. (2014) 
  11. Gürsoy, F., Karakaya, V., Rhoades, B. E., 10.1186/1687-1812-2013-76, Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages. (2013) Zbl06282865MR3047130DOI10.1186/1687-1812-2013-76
  12. Gürsoy, F., Khan, A. R., Fukhar-ud-din, H., 10.15672/HJMS.20174720334, Hacet. J. Math. Stat. 46 (2017), 373-388. (2017) Zbl06810307MR36991880DOI10.15672/HJMS.20174720334
  13. Haghi, R. H., Postolache, M., Rezapour, S., 10.1155/2012/658971, Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages. (2012) Zbl1252.54035MR2965457DOI10.1155/2012/658971
  14. Harder, A. M., Hicks, T. L., Stability results for fixed point iteration procedures, Math. Jap. 33 (1988), 693-706. (1988) Zbl0655.47045MR0972379
  15. Ishikawa, S., 10.2307/2039245, Proc. Am. Math. Soc. 44 (1974), 147-150. (1974) Zbl0286.47036MR0336469DOI10.2307/2039245
  16. Karakaya, V., Doğan, K., Gürsoy, F., Ertürk, M., 10.1155/2013/560258, Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages. (2013) Zbl1364.47026MR3147859DOI10.1155/2013/560258
  17. Karakaya, V., Gürsoy, F., Ertürk, M., Some convergence and data dependence results for various fixed point iterative methods, Kuwait J. Sci. 43 (2016), 112-128. (2016) MR3496310
  18. Khan, S. H., 10.1186/1687-1812-2013-69, Fixed Point Theory Appl. 2013 (2013), Paper No. 69, 10 pages. (2013) Zbl1317.47065MR3053809DOI10.1186/1687-1812-2013-69
  19. Khan, A. R., Gürsoy, F., Karakaya, V., 10.1080/00207160.2015.1085030, Int. J. Comput. Math. 93 (2016), 2092-2105. (2016) Zbl06679732MR3576658DOI10.1080/00207160.2015.1085030
  20. Khan, A. R., Gürsoy, F., Kumar, V., 10.3906/mat-1503-1, Turkish J. Math. 40 (2016), 631-640. (2016) MR3486126DOI10.3906/mat-1503-1
  21. Khan, A. R., Kumar, V., Hussain, N., 10.1016/j.amc.2013.12.150, Appl. Math. Comput. 231 (2014), 521-535. (2014) MR3174051DOI10.1016/j.amc.2013.12.150
  22. Mann, W. R., 10.2307/2032162, Proc. Am. Math. Soc. 4 (1953), 506-510. (1953) Zbl0050.11603MR0054846DOI10.2307/2032162
  23. Okeke, G. A., Kim, J. K., 10.1186/s13660-015-0815-0, J. Inequal. Appl. 2015 (2015), Paper No. 290, 14 pages. (2015) Zbl1351.47051MR3399253DOI10.1186/s13660-015-0815-0
  24. Olatinwo, M. O., Postolache, M., 10.1016/j.amc.2011.12.038, Appl. Math. Comput. 218 (2012), 6727-6732. (2012) Zbl1293.54033MR2880328DOI10.1016/j.amc.2011.12.038
  25. Phuengrattana, W., Suantai, S., Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces, Thai J. Math. 11 (2013), 217-226. (2013) Zbl1294.47090MR3065435
  26. Picard, E., Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, Journ. de Math. (4) 6 (1890), 145-210 French 9999JFM99999 22.0357.02. (1890) 
  27. Sahu, D. R., Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), 187-204. (2011) Zbl1281.47053MR2797080
  28. Scherzer, O., 10.1006/jmaa.1995.1335, J. Math. Anal. Appl. 194 (1995), 911-933. (1995) Zbl0842.65036MR1350202DOI10.1006/jmaa.1995.1335
  29. Şoltuz, Ş. M., Grosan, T., 10.1155/2008/242916, Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages. (2008) Zbl1205.47059MR2415408DOI10.1155/2008/242916
  30. Xu, B., Noor, M. A., 10.1006/jmaa.2001.7649, J. Math. Anal. Appl. 267 (2002), 444-453. (2002) Zbl1011.47039MR1888015DOI10.1006/jmaa.2001.7649
  31. Yildirim, I., Abbas, M., Karaca, N., 10.22436/jnsa.009.06.27, J. Nonlinear Sci. Appl. 9 (2016), 3773-3786. (2016) Zbl1350.47050MR3517127DOI10.22436/jnsa.009.06.27

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.