Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
Archivum Mathematicum (2018)
- Volume: 054, Issue: 5, page 313-329
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRusin, Tomáš. "Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds." Archivum Mathematicum 054.5 (2018): 313-329. <http://eudml.org/doc/294652>.
@article{Rusin2018,
abstract = {We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde\{G\}_\{n,k\}$. We then use it to compute uniform upper bounds for the $\mathbb \{Z\}_2$–cup-length of $\widetilde\{G\}_\{n,k\}$ for $n$ belonging to certain intervals.},
author = {Rusin, Tomáš},
journal = {Archivum Mathematicum},
keywords = {cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class},
language = {eng},
number = {5},
pages = {313-329},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds},
url = {http://eudml.org/doc/294652},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Rusin, Tomáš
TI - Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 5
SP - 313
EP - 329
AB - We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb {Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
LA - eng
KW - cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class
UR - http://eudml.org/doc/294652
ER -
References
top- Borel, A., 10.1007/BF02564561, Comment. Math. Helv. 27 (1953), 165–197. (1953) MR0057541DOI10.1007/BF02564561
- Fukaya, T., 10.4310/HHA.2008.v10.n2.a10, Homology, Homotopy Appl. 10 (2008), 195–209. (2008) MR2475609DOI10.4310/HHA.2008.v10.n2.a10
- Jaworowski, J., 10.1007/BFb0084749, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, Algebraic topology Poznań 1989, 231–234. (1991) MR1133904DOI10.1007/BFb0084749
- Korbaš, J., The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. (2010) MR2656672
- Korbaš, J., The characteristic rank and cup-length in oriented Grassmann manifolds, Osaka J. Math. 52 (2015), 1163–1172. (2015) MR3426634
- Korbaš, J., Rusin, T., 10.1007/s12215-016-0249-7, Rend. Circ. Mat. Palermo (2) 65 (2016), 507–517. (2016) MR3571326DOI10.1007/s12215-016-0249-7
- Korbaš, J., Rusin, T., 10.4310/HHA.2016.v18.n2.a4, Homology, Homotopy, Appl. 18 (2) (2016), 71–84. (2016) MR3518983DOI10.4310/HHA.2016.v18.n2.a4
- Milnor, J., Stasheff, J., Characteristic Classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. (1974) Zbl0298.57008MR0440554
- Naolekar, A.C., Thakur, A.S., 10.2478/s12175-014-0289-4, Math. Slovaca 64 (2014), 1525–1540. (2014) MR3298036DOI10.2478/s12175-014-0289-4
- Petrović, Z.Z., Prvulović, B. I., Radovanović, M., Characteristic rank of canonical vector bundles over oriented Grassmann manifolds , Topology Appl. 230 (2017), 114–121. (2017) MR3702758
- Rusin, T., 10.1016/j.topol.2016.11.009, Topology Appl. 216 (2017), 48–58. (2017) MR3584122DOI10.1016/j.topol.2016.11.009
- Stong, R.E., 10.1016/0022-4049(84)90029-X, J. Pure Appl. Algebra 33 (1984), 97–103. (1984) MR0750235DOI10.1016/0022-4049(84)90029-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.