A remark on weak McShane integral

Kazushi Yoshitomi

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 45-53
  • ISSN: 0011-4642

Abstract

top
We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.

How to cite

top

Yoshitomi, Kazushi. "A remark on weak McShane integral." Czechoslovak Mathematical Journal 69.1 (2019): 45-53. <http://eudml.org/doc/294655>.

@article{Yoshitomi2019,
abstract = {We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.},
author = {Yoshitomi, Kazushi},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak McShane integral; finite McShane partition; Radon measure space},
language = {eng},
number = {1},
pages = {45-53},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A remark on weak McShane integral},
url = {http://eudml.org/doc/294655},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Yoshitomi, Kazushi
TI - A remark on weak McShane integral
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 45
EP - 53
AB - We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.
LA - eng
KW - weak McShane integral; finite McShane partition; Radon measure space
UR - http://eudml.org/doc/294655
ER -

References

top
  1. Bauer, H., Measure and Integration Theory. De Gruyter Studies in Mathematics 26, Walter de Gruyter, Berlin (2001). (2001) Zbl0985.28001MR1897176
  2. Faure, C.-A., Mawhin, J., 10.1006/jmaa.1996.5172, J. Math. Anal. Appl. 205 (1997), 65-77. (1997) Zbl0879.26047MR1426980DOI10.1006/jmaa.1996.5172
  3. Fremlin, D. H., Topological Riesz Spaces and Measure Theory, Cambridge University Press, London (1974). (1974) Zbl0273.46035MR0454575
  4. Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
  5. Kelley, J. L., Srinivasan, T. P., 10.1007/978-1-4612-4570-4, Springer, New York (1988). (1988) Zbl0635.28001MR0918770DOI10.1007/978-1-4612-4570-4
  6. Saadoune, M., Sayyad, R., 10.1007/s10587-014-0108-7, Czech. Math. J. 64 (2014), 387-418. (2014) Zbl1340.28016MR3277743DOI10.1007/s10587-014-0108-7
  7. Schwabik, Š., Ye, G., 10.1142/9789812703286, World Scientific, Singapore (2005). (2005) Zbl1088.28008MR2167754DOI10.1142/9789812703286
  8. Talagrand, M., 10.1090/memo/0307, Mem. Am. Math. Soc. 307 (1984),9999MR99999 0756174 . (1984) Zbl0582.46049MR0756174DOI10.1090/memo/0307

NotesEmbed ?

top

You must be logged in to post comments.