On row-sum majorization
Farzaneh Akbarzadeh; Ali Armandnejad
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1111-1121
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAkbarzadeh, Farzaneh, and Armandnejad, Ali. "On row-sum majorization." Czechoslovak Mathematical Journal 69.4 (2019): 1111-1121. <http://eudml.org/doc/294661>.
@article{Akbarzadeh2019,
abstract = {Let $\mathbb \{M\}_\{n,m\}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb \{M\}_\{n,m\}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^\{\rm rs\} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb \{R\}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb \{M\}_\{n,m\}\rightarrow \mathbb \{M\}_\{n,m\}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb \{R\}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb \{M\}_\{n,m\}$.},
author = {Akbarzadeh, Farzaneh, Armandnejad, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {majorization; linear preserver; doubly stochastic matrix},
language = {eng},
number = {4},
pages = {1111-1121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On row-sum majorization},
url = {http://eudml.org/doc/294661},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Akbarzadeh, Farzaneh
AU - Armandnejad, Ali
TI - On row-sum majorization
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1111
EP - 1121
AB - Let $\mathbb {M}_{n,m}$ be the set of all $n\times m$ real or complex matrices. For $A,B\in \mathbb {M}_{n,m}$, we say that $A$ is row-sum majorized by $B$ (written as $A\prec ^{\rm rs} B$) if $R(A)\prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec $ is the classical majorization on $\mathbb {R}^n$. In the present paper, the structure of all linear operators $T\colon \mathbb {M}_{n,m}\rightarrow \mathbb {M}_{n,m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb {R}^n$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb {M}_{n,m}$.
LA - eng
KW - majorization; linear preserver; doubly stochastic matrix
UR - http://eudml.org/doc/294661
ER -
References
top- Ando, T., 10.1016/0024-3795(89)90580-6, Linear Algebra Appl. 118 (1989), 163-248. (1989) Zbl0673.15011MR0995373DOI10.1016/0024-3795(89)90580-6
- Armandnejad, A., Heydari, H., Linear preserving -majorization functions from to , Bull. Iran. Math. Soc. 37 (2011), 215-224. (2011) Zbl1237.15021MR2850115
- Bhatia, R., 10.1007/978-1-4612-0653-8, Graduate Texts in Mathematics 169, Springer, New York (1997). (1997) Zbl0863.15001MR1477662DOI10.1007/978-1-4612-0653-8
- Hasani, A. M., Radjabalipour, M., 10.13001/1081-3810.1236, Electron. J. Linear Algebra 15 (2006), 260-268. (2006) Zbl1145.15003MR2255479DOI10.13001/1081-3810.1236
- Motlaghian, S. M., Armandnejad, A., Hall, F. J., 10.13001/1081-3810.3281, Electron. J. Linear Algebra 31 (2016), 593-609. (2016) Zbl1347.15005MR3578394DOI10.13001/1081-3810.3281
- Soleymani, M., Armandnejad, A., 10.1016/j.laa.2013.10.040, Linear Algebra Appl. 440 (2014), 286-292. (2014) Zbl1286.15033MR3134271DOI10.1016/j.laa.2013.10.040
- Soleymani, M., Armandnejad, A., 10.1080/03081087.2013.832487, Linear Multilinear Algebra 62 (2014), 1437-1449. (2014) Zbl1309.15045MR3261749DOI10.1080/03081087.2013.832487
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.