The method of lines for hyperbolic stochastic functional partial differential equations
Monika Wrzosek; Maria Ziemlańska
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 323-339
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWrzosek, Monika, and Ziemlańska, Maria. "The method of lines for hyperbolic stochastic functional partial differential equations." Czechoslovak Mathematical Journal 68.2 (2018): 323-339. <http://eudml.org/doc/294679>.
@article{Wrzosek2018,
abstract = {We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small $L^2$-perturbations.},
author = {Wrzosek, Monika, Ziemlańska, Maria},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic partial differential equation; stability of the method of lines; white noise; Volterra stochastic equation},
language = {eng},
number = {2},
pages = {323-339},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The method of lines for hyperbolic stochastic functional partial differential equations},
url = {http://eudml.org/doc/294679},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Wrzosek, Monika
AU - Ziemlańska, Maria
TI - The method of lines for hyperbolic stochastic functional partial differential equations
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 323
EP - 339
AB - We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small $L^2$-perturbations.
LA - eng
KW - stochastic partial differential equation; stability of the method of lines; white noise; Volterra stochastic equation
UR - http://eudml.org/doc/294679
ER -
References
top- Ashyralyev, A., Koksal, M. E., Agarwal, R. P., 10.1016/j.mcm.2010.03.012, Math. Comput. Modelling 52 (2010), 409-424. (2010) Zbl1201.65150MR2645953DOI10.1016/j.mcm.2010.03.012
- Ashyralyev, A., Yurtsever, H. A., 10.1016/j.camwa.2006.08.017, Comput. Math. Appl. 52 (2006), 259-268. (2006) Zbl1137.65054MR2263496DOI10.1016/j.camwa.2006.08.017
- Bahuguna, D., Dabas, J., Shukla, R. K., Method of lines to hyperbolic integro-differential equations in , Nonlinear Dyn. Syst. Theory 8 (2008), 317-328. (2008) Zbl1206.45010MR2482448
- Bátkai, A., Csomós, P., Nickel, G., 10.1007/s00028-009-0026-6, J. Evol. Equ. 9 (2009), 613-636. (2009) Zbl1239.47031MR2529739DOI10.1007/s00028-009-0026-6
- Berger, M. A., Mizel, V. J., Volterra equations with Ito integrals I, J. Integral Equations 2 (1980), 187-245. (1980) Zbl0442.60064MR0581430
- Prato, G. Da, Zabczyk, J., 10.1017/CBO9780511666223, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136DOI10.1017/CBO9780511666223
- Debbi, L., Dozzi, M., On a space discretization scheme for the fractional stochastic heat equations, Avaible at https://arxiv.org/abs/1102.4689v1.
- Friedman, A., Stochastic Differential Equations and Applications, Vol. 1, Probability and Mathematical Statistics 28, Academic Press, New York (1975). (1975) Zbl0323.60056MR0494490
- Funaki, T., 10.2969/jmsj/03140719, J. Math. Soc. Japan 31 (1979), 719-744. (1979) Zbl0405.60067MR0544688DOI10.2969/jmsj/03140719
- Holden, H., Øksendal, B., Ubøe, J., Zhang, T., 10.1007/978-1-4684-9215-6, Probability and Its Applications, Birkhäuser, Basel (1996). (1996) Zbl0860.60045MR1408433DOI10.1007/978-1-4684-9215-6
- Kamont, Z., 10.1007/978-94-011-4635-7, Mathematics and Its Applications 486, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0973.35188MR1784260DOI10.1007/978-94-011-4635-7
- Kim, J. U., 10.1016/j.jfa.2010.08.017, J. Funct. Anal. 259 (2010), 3328-3359. (2010) Zbl1203.35293MR2727647DOI10.1016/j.jfa.2010.08.017
- Klebaner, F. C., 10.1142/p386, Imperial College Press, London (2005). (2005) Zbl1077.60001MR2160228DOI10.1142/p386
- Kreiss, H.-O., Scherer, G., 10.1137/0729041, SIAM J. Numer. Anal. 29 (1992), 640-646. (1992) Zbl0754.65078MR1163349DOI10.1137/0729041
- Leszczyński, H., 10.1515/GMJ.2000.97, Georgian Math. J. 7 (2000), 97-116. (2000) Zbl0964.35075MR1768048DOI10.1515/GMJ.2000.97
- Leszczyński, H., 10.1515/jaa.2011.009, J. Appl. Anal. 17 (2011), 137-154. (2011) Zbl1276.34065MR2805852DOI10.1515/jaa.2011.009
- McDonald, S., Finite difference approximation for linear stochastic partial differential equation with method of lines, MPRA Paper No. 3983. Avaible at http://mpra.ub.uni-muenchen.de/3983 (2006). (2006)
- Quer-Sardanyons, L., Sanz-Solé, M., 10.1007/s11118-005-9002-0, Potential Anal. 24 (2006), 303-332. (2006) Zbl1119.60061MR2224753DOI10.1007/s11118-005-9002-0
- Reddy, S. C., Trefethen, L. N., 10.1007/BF01396228, Numer. Math. 62 (1992), 235-267. (1992) Zbl0734.65077MR1165912DOI10.1007/BF01396228
- Rößler, A., Seaïd, M., Zahri, M., 10.1016/j.amc.2007.09.062, Appl. Math. Comput. 199 (2008), 301-314. (2008) Zbl1142.65007MR2415825DOI10.1016/j.amc.2007.09.062
- Sharma, K. K., Singh, P., 10.1016/j.amc.2007.12.051, Appl. Math. Comput. 201 (2008), 229-238. (2008) Zbl1155.65374MR2432598DOI10.1016/j.amc.2007.12.051
- Yoo, H., 10.1090/S0025-5718-99-01150-3, Math. Comput. 69 (2000), 653-666. (2000) Zbl0942.65006MR1654030DOI10.1090/S0025-5718-99-01150-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.