Relative tilting modules with respect to a semidualizing module

Maryam Salimi

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 781-800
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

How to cite

top

Salimi, Maryam. "Relative tilting modules with respect to a semidualizing module." Czechoslovak Mathematical Journal 69.3 (2019): 781-800. <http://eudml.org/doc/294681>.

@article{Salimi2019,
abstract = {Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules.},
author = {Salimi, Maryam},
journal = {Czechoslovak Mathematical Journal},
keywords = {tilting module; semidualizing module; $C$-projective},
language = {eng},
number = {3},
pages = {781-800},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative tilting modules with respect to a semidualizing module},
url = {http://eudml.org/doc/294681},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Salimi, Maryam
TI - Relative tilting modules with respect to a semidualizing module
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 781
EP - 800
AB - Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules.
LA - eng
KW - tilting module; semidualizing module; $C$-projective
UR - http://eudml.org/doc/294681
ER -

References

top
  1. Avramov, L. L., Foxby, H.-B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc. III. 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
  2. Bazzoni, S., Mantese, F., Tonolo, A., 10.1090/S0002-9939-2011-10900-6, Proc. Am. Math. Soc. 139 (2011), 4225-4234. (2011) Zbl1232.16004MR2823068DOI10.1090/S0002-9939-2011-10900-6
  3. Bongratz, K., 10.1007/bfb0092982, Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38. (1981) Zbl0478.16025MR0654701DOI10.1007/bfb0092982
  4. Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
  5. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110215212, Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011). (2011) Zbl1238.13001MR2857612DOI10.1515/9783110215212
  6. Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1973), 267-284. (1973) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
  7. Golod, E. S., G -dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66. (1984) Zbl0577.13008MR0752933
  8. Happel, D., Ringel, C. M., 10.2307/1999116, Trans. Am. Math. Soc. 274 (1982), 399-443. (1982) Zbl0503.16024MR0675063DOI10.2307/1999116
  9. Holm, H., Jø{r}gensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
  10. Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
  11. Miyashita, Y., 10.1007/BF01163359, Math. Z. 193 (1986), 113-146. (1986) Zbl0578.16015MR0852914DOI10.1007/BF01163359
  12. Salimi, M., On relative Gorenstein homological dimensions with respect to a dualizing module, Mat. Vesnik 69 (2017), 118-125. (2017) MR3621408
  13. Salimi, M., Sather-Wagstaff, S., Tavasoli, E., Yassemi, S., 10.1007/s10468-012-9389-4, Algebr. Represent. Theory 17 (2014), 103-120. (2014) Zbl1295.13023MR3160715DOI10.1007/s10468-012-9389-4
  14. Salimi, M., Tavasoli, E., Yassemi, S., 10.1007/s00013-012-0371-5, Arch. Math. 98 (2012), 299-305. (2012) Zbl1246.13021MR2914346DOI10.1007/s00013-012-0371-5
  15. Sather-Wagstaff, S., Semidualizing Modules, Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl1282.13021
  16. Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s00209-009-0480-4, Math. Z. 264 (2010), 571-600. (2010) Zbl1190.13007MR2591820DOI10.1007/s00209-009-0480-4
  17. Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
  18. Tang, X., 10.1080/00927872.2010.540285, Commun. Algebra 40 (2012), 845-861. (2012) Zbl1246.13022MR2899912DOI10.1080/00927872.2010.540285
  19. Vasconcelos, W. V., 10.1016/s0304-0208(08)x7021-5, North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974). (1974) Zbl0296.13005MR0498530DOI10.1016/s0304-0208(08)x7021-5
  20. White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra 2 (2010), 111-137. (2010) Zbl1237.13029MR2607104DOI10.1216/JCA-2010-2-1-111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.