Relative tilting modules with respect to a semidualizing module
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 781-800
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSalimi, Maryam. "Relative tilting modules with respect to a semidualizing module." Czechoslovak Mathematical Journal 69.3 (2019): 781-800. <http://eudml.org/doc/294681>.
@article{Salimi2019,
abstract = {Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules.},
author = {Salimi, Maryam},
journal = {Czechoslovak Mathematical Journal},
keywords = {tilting module; semidualizing module; $C$-projective},
language = {eng},
number = {3},
pages = {781-800},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative tilting modules with respect to a semidualizing module},
url = {http://eudml.org/doc/294681},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Salimi, Maryam
TI - Relative tilting modules with respect to a semidualizing module
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 781
EP - 800
AB - Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules.
LA - eng
KW - tilting module; semidualizing module; $C$-projective
UR - http://eudml.org/doc/294681
ER -
References
top- Avramov, L. L., Foxby, H.-B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc. III. 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
- Bazzoni, S., Mantese, F., Tonolo, A., 10.1090/S0002-9939-2011-10900-6, Proc. Am. Math. Soc. 139 (2011), 4225-4234. (2011) Zbl1232.16004MR2823068DOI10.1090/S0002-9939-2011-10900-6
- Bongratz, K., 10.1007/bfb0092982, Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38. (1981) Zbl0478.16025MR0654701DOI10.1007/bfb0092982
- Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110215212, Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011). (2011) Zbl1238.13001MR2857612DOI10.1515/9783110215212
- Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1973), 267-284. (1973) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
- Golod, E. S., -dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66. (1984) Zbl0577.13008MR0752933
- Happel, D., Ringel, C. M., 10.2307/1999116, Trans. Am. Math. Soc. 274 (1982), 399-443. (1982) Zbl0503.16024MR0675063DOI10.2307/1999116
- Holm, H., Jø{r}gensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
- Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
- Miyashita, Y., 10.1007/BF01163359, Math. Z. 193 (1986), 113-146. (1986) Zbl0578.16015MR0852914DOI10.1007/BF01163359
- Salimi, M., On relative Gorenstein homological dimensions with respect to a dualizing module, Mat. Vesnik 69 (2017), 118-125. (2017) MR3621408
- Salimi, M., Sather-Wagstaff, S., Tavasoli, E., Yassemi, S., 10.1007/s10468-012-9389-4, Algebr. Represent. Theory 17 (2014), 103-120. (2014) Zbl1295.13023MR3160715DOI10.1007/s10468-012-9389-4
- Salimi, M., Tavasoli, E., Yassemi, S., 10.1007/s00013-012-0371-5, Arch. Math. 98 (2012), 299-305. (2012) Zbl1246.13021MR2914346DOI10.1007/s00013-012-0371-5
- Sather-Wagstaff, S., Semidualizing Modules, Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl1282.13021
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s00209-009-0480-4, Math. Z. 264 (2010), 571-600. (2010) Zbl1190.13007MR2591820DOI10.1007/s00209-009-0480-4
- Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
- Tang, X., 10.1080/00927872.2010.540285, Commun. Algebra 40 (2012), 845-861. (2012) Zbl1246.13022MR2899912DOI10.1080/00927872.2010.540285
- Vasconcelos, W. V., 10.1016/s0304-0208(08)x7021-5, North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974). (1974) Zbl0296.13005MR0498530DOI10.1016/s0304-0208(08)x7021-5
- White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra 2 (2010), 111-137. (2010) Zbl1237.13029MR2607104DOI10.1216/JCA-2010-2-1-111
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.