Associated primes of local cohomology modules of generalized Laskerian modules

Dawood Hassanzadeh-Lelekaami; Hajar Roshan-Shekalgourabi

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1101-1109
  • ISSN: 0011-4642

Abstract

top
Let be a set of ideals of a commutative Noetherian ring R . We use the notion of -closure operation which is a semiprime closure operation on submodules of modules to introduce the class of -Laskerian modules. This enables us to investigate the set of associated prime ideals of certain -closed submodules of local cohomology modules.

How to cite

top

Hassanzadeh-Lelekaami, Dawood, and Roshan-Shekalgourabi, Hajar. "Associated primes of local cohomology modules of generalized Laskerian modules." Czechoslovak Mathematical Journal 69.4 (2019): 1101-1109. <http://eudml.org/doc/294687>.

@article{Hassanzadeh2019,
abstract = {Let $\mathcal \{I\}$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal \{I\}$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal \{I\}$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal \{I\}$-closed submodules of local cohomology modules.},
author = {Hassanzadeh-Lelekaami, Dawood, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation},
language = {eng},
number = {4},
pages = {1101-1109},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Associated primes of local cohomology modules of generalized Laskerian modules},
url = {http://eudml.org/doc/294687},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Hassanzadeh-Lelekaami, Dawood
AU - Roshan-Shekalgourabi, Hajar
TI - Associated primes of local cohomology modules of generalized Laskerian modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1101
EP - 1109
AB - Let $\mathcal {I}$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal {I}$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal {I}$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal {I}$-closed submodules of local cohomology modules.
LA - eng
KW - associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation
UR - http://eudml.org/doc/294687
ER -

References

top
  1. Brodmann, M. P., Lashgari, F. A., 10.1090/s0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/s0002-9939-00-05328-4
  2. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  3. Divaani-Aazar, K., Mafi, A., 10.1090/s0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/s0002-9939-04-07728-7
  4. Divaani-Aazar, K., Mafi, A., 10.1080/00927870500387945, Commun. Algebra 34 (2006), 681-690. (2006) Zbl1097.13021MR2211948DOI10.1080/00927870500387945
  5. Hartshorne, R., 10.1007/bf01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/bf01404554
  6. Hassanzadeh-Lelekaami, D., 10.1142/s0219498817502292, J. Algebra Appl. 16 (2017), Article ID 1750229, 22 pages. (2017) Zbl1387.13013MR3725089DOI10.1142/s0219498817502292
  7. Huneke, C., Problems on local cohomology, Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. (1992) Zbl0782.13015MR1165320
  8. Katzman, M., 10.1016/s0021-8693(02)00032-7, J. Algebra 252 (2002), 161-166. (2002) Zbl1083.13505MR1922391DOI10.1016/s0021-8693(02)00032-7
  9. Khashyarmanesh, K., Salarian, Sh., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
  10. Kirby, D., 10.1007/bf02413738, Ann. Mat. Pura Appl. (4) 71 (1966), 109-125. (1966) Zbl0139.26501MR0210694DOI10.1007/bf02413738
  11. Rotman, J. J., 10.1007/b98977, Universitext, Springer, New York (2009). (2009) Zbl1157.18001MR2455920DOI10.1007/b98977
  12. Singh, A. K., 10.4310/mrl.2000.v7.n2.a3, Math. Res. Lett. 7 (2000), 165-176. (2000) Zbl0965.13013MR1764314DOI10.4310/mrl.2000.v7.n2.a3
  13. Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.