Associated primes of local cohomology modules of generalized Laskerian modules
Dawood Hassanzadeh-Lelekaami; Hajar Roshan-Shekalgourabi
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1101-1109
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHassanzadeh-Lelekaami, Dawood, and Roshan-Shekalgourabi, Hajar. "Associated primes of local cohomology modules of generalized Laskerian modules." Czechoslovak Mathematical Journal 69.4 (2019): 1101-1109. <http://eudml.org/doc/294687>.
@article{Hassanzadeh2019,
abstract = {Let $\mathcal \{I\}$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal \{I\}$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal \{I\}$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal \{I\}$-closed submodules of local cohomology modules.},
author = {Hassanzadeh-Lelekaami, Dawood, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation},
language = {eng},
number = {4},
pages = {1101-1109},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Associated primes of local cohomology modules of generalized Laskerian modules},
url = {http://eudml.org/doc/294687},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Hassanzadeh-Lelekaami, Dawood
AU - Roshan-Shekalgourabi, Hajar
TI - Associated primes of local cohomology modules of generalized Laskerian modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1101
EP - 1109
AB - Let $\mathcal {I}$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal {I}$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal {I}$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal {I}$-closed submodules of local cohomology modules.
LA - eng
KW - associated prime ideals; Grothendieck spectral sequence; local cohomology module; semiprime closure operation
UR - http://eudml.org/doc/294687
ER -
References
top- Brodmann, M. P., Lashgari, F. A., 10.1090/s0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/s0002-9939-00-05328-4
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Divaani-Aazar, K., Mafi, A., 10.1090/s0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/s0002-9939-04-07728-7
- Divaani-Aazar, K., Mafi, A., 10.1080/00927870500387945, Commun. Algebra 34 (2006), 681-690. (2006) Zbl1097.13021MR2211948DOI10.1080/00927870500387945
- Hartshorne, R., 10.1007/bf01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/bf01404554
- Hassanzadeh-Lelekaami, D., 10.1142/s0219498817502292, J. Algebra Appl. 16 (2017), Article ID 1750229, 22 pages. (2017) Zbl1387.13013MR3725089DOI10.1142/s0219498817502292
- Huneke, C., Problems on local cohomology, Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. (1992) Zbl0782.13015MR1165320
- Katzman, M., 10.1016/s0021-8693(02)00032-7, J. Algebra 252 (2002), 161-166. (2002) Zbl1083.13505MR1922391DOI10.1016/s0021-8693(02)00032-7
- Khashyarmanesh, K., Salarian, Sh., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
- Kirby, D., 10.1007/bf02413738, Ann. Mat. Pura Appl. (4) 71 (1966), 109-125. (1966) Zbl0139.26501MR0210694DOI10.1007/bf02413738
- Rotman, J. J., 10.1007/b98977, Universitext, Springer, New York (2009). (2009) Zbl1157.18001MR2455920DOI10.1007/b98977
- Singh, A. K., 10.4310/mrl.2000.v7.n2.a3, Math. Res. Lett. 7 (2000), 165-176. (2000) Zbl0965.13013MR1764314DOI10.4310/mrl.2000.v7.n2.a3
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.