Estimation and bimodality testing in the cusp model

Jan Voříšek

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 798-814
  • ISSN: 0023-5954

Abstract

top
The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings.

How to cite

top

Voříšek, Jan. "Estimation and bimodality testing in the cusp model." Kybernetika 54.4 (2018): 798-814. <http://eudml.org/doc/294693>.

@article{Voříšek2018,
abstract = {The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings.},
author = {Voříšek, Jan},
journal = {Kybernetika},
keywords = {multimodal distributions; cusp model; bimodality test; reduced maximum likelihood estimation},
language = {eng},
number = {4},
pages = {798-814},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Estimation and bimodality testing in the cusp model},
url = {http://eudml.org/doc/294693},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Voříšek, Jan
TI - Estimation and bimodality testing in the cusp model
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 798
EP - 814
AB - The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings.
LA - eng
KW - multimodal distributions; cusp model; bimodality test; reduced maximum likelihood estimation
UR - http://eudml.org/doc/294693
ER -

References

top
  1. Arnold, V. I., 10.1007/978-3-642-58124-3, Springer-Verlag, Berlin 1992. MR1178935DOI10.1007/978-3-642-58124-3
  2. Barunik, J., Kukačka, J., 10.1080/14697688.2014.950319, Quantitative Finance 15 (2015), 959-973. MR3344222DOI10.1080/14697688.2014.950319
  3. Barunik, J., Vošvrda, M., 10.1016/j.jedc.2009.04.004, J. Economic Dynamics Control 33 (2009), 1824-1836. MR2569497DOI10.1016/j.jedc.2009.04.004
  4. Cobb, L., 10.1002/bs.3830230407, Behavioral Sci. 23 (1978), 360-374. MR0517512DOI10.1002/bs.3830230407
  5. Cobb, L., Watson, B., 10.1016/0270-0255(80)90041-x, Math. Modell. 1 (1980), 311-317. MR0651732DOI10.1016/0270-0255(80)90041-x
  6. Cobb, L., 10.1002/bs.3830260107, Behavioral Sci. 26 (1981), 75-78. DOI10.1002/bs.3830260107
  7. Cobb, L., Koppstein, P., Chen, N. H., 10.2307/2287118, J. Amer. Statist. Assoc. 78 (1983), 124-130. MR0696856DOI10.2307/2287118
  8. Creedy, J., Lye, J., Martin, V., 10.1002/(sici)1099-1255(199611)11:6<669::aid-jae415>3.0.co;2-5, Econom. Modell. 11 (1996), 669-686. DOI10.1002/(sici)1099-1255(199611)11:6<669::aid-jae415>3.0.co;2-5
  9. Diks, C., Wang, J., 10.1016/j.jedc.2016.05.008, J. Econom. Dynamics Control 69 (2016), 68-88. DOI10.1016/j.jedc.2016.05.008
  10. Fernandes, M., 10.1016/j.jedc.2004.11.005, J. Econom. Dynamics Control 30 (2006), 111-141. MR2192107DOI10.1016/j.jedc.2004.11.005
  11. Grasman, R. P. P. P., Maas, H. L. J. van der, Wagenmakers, E. J., 10.18637/jss.v032.i08, J. Statist. Software 32 (2009), 1-28. DOI10.18637/jss.v032.i08
  12. Hartigan, J. A., Hartigan, P. M., 10.1214/aos/1176346577, Ann. Statist. 13 (1985), 70-84. MR0773153DOI10.1214/aos/1176346577
  13. Kodde, D. A., Palm, F. C., 10.2307/1912331, Econometrica 54 (1986), 1243-1248. MR0859464DOI10.2307/1912331
  14. Koh, S. K., Fong, W. M., Chan, F., 10.1016/j.jimonfin.2006.08.001, J. Int. Money Finance 26 (2007), 131-148. DOI10.1016/j.jimonfin.2006.08.001
  15. Lehman, E. L., Romano, J. P., 10.1007/0-387-27605-x, Springer-Verlag, New York 2005. MR2135927DOI10.1007/0-387-27605-x
  16. Matz, A. W., 10.1080/00401706.1978.10489702, Technometrics 20 (1978), 475-484. DOI10.1080/00401706.1978.10489702
  17. Thom, R., Structural Stability and Morpohogenesis., W. A. Benjamin, New York 1975. MR0488156

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.