Graphs with small diameter determined by their -spectra
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 1-17
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Ruifang, and Xue, Jie. "Graphs with small diameter determined by their $D$-spectra." Czechoslovak Mathematical Journal 68.1 (2018): 1-17. <http://eudml.org/doc/294696>.
@article{Liu2018,
abstract = {Let $G$ be a connected graph with vertex set $V(G)=\lbrace v_\{1\},v_\{2\},\ldots ,v_\{n\}\rbrace $. The distance matrix $D(G)=(d_\{ij\})_\{n\times n\}$ is the matrix indexed by the vertices of $G$, where $d_\{ij\}$ denotes the distance between the vertices $v_\{i\}$ and $v_\{j\}$. Suppose that $\lambda _\{1\}(D)\ge \lambda _\{2\}(D)\ge \cdots \ge \lambda _\{n\}(D)$ are the distance spectrum of $G$. The graph $G$ is said to be determined by its $D$-spectrum if with respect to the distance matrix $D(G)$, any graph having the same spectrum as $G$ is isomorphic to $G$. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their $D$-spectra.},
author = {Liu, Ruifang, Xue, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance spectrum; distance characteristic polynomial; $D$-spectrum determined by its $D$-spectrum},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Graphs with small diameter determined by their $D$-spectra},
url = {http://eudml.org/doc/294696},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Liu, Ruifang
AU - Xue, Jie
TI - Graphs with small diameter determined by their $D$-spectra
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 1
EP - 17
AB - Let $G$ be a connected graph with vertex set $V(G)=\lbrace v_{1},v_{2},\ldots ,v_{n}\rbrace $. The distance matrix $D(G)=(d_{ij})_{n\times n}$ is the matrix indexed by the vertices of $G$, where $d_{ij}$ denotes the distance between the vertices $v_{i}$ and $v_{j}$. Suppose that $\lambda _{1}(D)\ge \lambda _{2}(D)\ge \cdots \ge \lambda _{n}(D)$ are the distance spectrum of $G$. The graph $G$ is said to be determined by its $D$-spectrum if with respect to the distance matrix $D(G)$, any graph having the same spectrum as $G$ is isomorphic to $G$. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their $D$-spectra.
LA - eng
KW - distance spectrum; distance characteristic polynomial; $D$-spectrum determined by its $D$-spectrum
UR - http://eudml.org/doc/294696
ER -
References
top- Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W., 10.1007/s10801-014-0557-y, J. Algebra Comb. 41 (2015), 887-897. (2015) Zbl1317.05111MR3328184DOI10.1007/s10801-014-0557-y
- Cvetković, D. M., Doob, M., Sachs, H., 10.1002/zamm.19960760305, J. A. Barth Verlag, Heidelberg (1995). (1995) Zbl0824.05046MR1324340DOI10.1002/zamm.19960760305
- Günthard, H. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta 39 (1956), 1645-1653 German. (1956) DOI10.1002/hlca.19560390623
- Jin, Y.-L., Zhang, X.-D., 10.1016/j.laa.2014.01.029, Linear Algebra Appl. 448 (2014), 285-291. (2014) Zbl1285.05114MR3182986DOI10.1016/j.laa.2014.01.029
- Lu, L., Huang, Q. X., Huang, X. Y., 10.1007/s10801-016-0718-2, J. Algebr. Comb. 45 (2017), 629-647. (2017) Zbl1358.05176MR3604069DOI10.1007/s10801-016-0718-2
- Lin, H. Q., 10.1016/j.disc.2015.01.00610.1016/j.disc.2015.01.006, Discrete Math. 338 (2015), 868-874. (2015) Zbl1371.05064MR3318625DOI10.1016/j.disc.2015.01.00610.1016/j.disc.2015.01.006
- Lin, H. Q., Hong, Y., Wang, J. F., Shu, J. L., 10.1016/j.laa.2013.04.019, Linear Algebra Appl. 439 (2013), 1662-1669. (2013) Zbl1282.05132MR3073894DOI10.1016/j.laa.2013.04.019
- Lin, H. Q., Zhai, M. Q., Gong, S. C., 10.1016/j.laa.2014.06.040, Linear Algebra Appl. 458 (2014), 548-558. (2014) Zbl1296.05123MR3231834DOI10.1016/j.laa.2014.06.040
- Liu, R. F., Xue, J., Guo, L. T., 1080/03081087.2016.1221376, Linear Multilinear Algebra 65 (2017), 1011-1021. (2017) Zbl1360.05099MR3610302DOI1080/03081087.2016.1221376
- Dam, E. R. van, Haemers, W. H., 10.1016/S0024-3795(03)00483-X, Linear Algebra Appl. 373 (2003), 241-272. (2003) Zbl1026.05079MR2022290DOI10.1016/S0024-3795(03)00483-X
- Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) Zbl1205.05156MR2499010DOI10.1016/j.disc.2008.08.019
- Xue, J., Liu, R. F., Jia, H. C., 10.2298/FIL1606559X, Filomat 30 (2016), 1559-1565. (2016) Zbl06749814MR3530101DOI10.2298/FIL1606559X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.