A new class of almost complex structures on tangent bundle of a Riemannian manifold
Communications in Mathematics (2018)
- Volume: 26, Issue: 2, page 137-145
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBaghban, Amir, and Abedi, Esmaeil. "A new class of almost complex structures on tangent bundle of a Riemannian manifold." Communications in Mathematics 26.2 (2018): 137-145. <http://eudml.org/doc/294697>.
@article{Baghban2018,
abstract = {In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.},
author = {Baghban, Amir, Abedi, Esmaeil},
journal = {Communications in Mathematics},
keywords = {Almost complex structure; curvature operator; integrability; tangent bundle},
language = {eng},
number = {2},
pages = {137-145},
publisher = {University of Ostrava},
title = {A new class of almost complex structures on tangent bundle of a Riemannian manifold},
url = {http://eudml.org/doc/294697},
volume = {26},
year = {2018},
}
TY - JOUR
AU - Baghban, Amir
AU - Abedi, Esmaeil
TI - A new class of almost complex structures on tangent bundle of a Riemannian manifold
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 137
EP - 145
AB - In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
LA - eng
KW - Almost complex structure; curvature operator; integrability; tangent bundle
UR - http://eudml.org/doc/294697
ER -
References
top- Abbassi, M.T.K., Calvaruso, G., Perrone, D., 10.1093/qmath/hap040, Q. J. Math., 62, 2, 2011, 259-288, (2011) MR2805204DOI10.1093/qmath/hap040
- Aguilar, R. M., 10.1007/BF02568316, Manuscripta Math., 90, 4, 1996, 429-436, (1996) MR1403714DOI10.1007/BF02568316
- Biswas, I., Loftin, J., Stemmler, M., 10.1007/s40065-012-0064-8, Arabian Journal of Mathematics, 2, 2, 2013, 159-175, (2013) MR3055288DOI10.1007/s40065-012-0064-8
- Choi, J., Mullhaupt, A. P., 10.3390/e17041581, Entropy, 17, 2015, 1581-1605, (2015) MR3344374DOI10.3390/e17041581
- Friswell, R. M., Wood, C. M., 10.1016/j.geomphys.2016.10.015, Journal of Geometry and Physics, 112, 2017, 45-58, (2017) MR3588756DOI10.1016/j.geomphys.2016.10.015
- Lisi, S.T., Applications of Symplectic Geometry to Hamiltonian Mechanics, 2006, PhD thesis, New York University. (2006) MR2708404
- Petersen, P., Riemannian Geometry, 2006, Springer, (2006) Zbl1220.53002MR2243772
- Peyghan, E., Heydari, A., Far, L. Nourmohammadi, 10.4064/ap103-3-2, Annales Polonici Mathematici, 103, 2012, 229-246, (2012) MR2876391DOI10.4064/ap103-3-2
- Peyghan, E., Nasrabadi, H., Tayebi, A., The homogenous lift to the -tensor bundle of a Riemannian metric, Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p, (2013) MR3037240
- Salimov, A. A., Gezer, A., 10.1007/s11401-011-0646-3, Chinese Ann. Math. Ser. B, 32, 3, 2011, 1-18, (2011) MR2805406DOI10.1007/s11401-011-0646-3
- Zhang, J., Li, F., Symplectic and Kähler structures on statistical manifolds induced from divergence functions, Conference paper in Geometric Science of Information, 2013, 595-603, Springer, (2013) MR3126092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.