A new class of almost complex structures on tangent bundle of a Riemannian manifold

Amir Baghban; Esmaeil Abedi

Communications in Mathematics (2018)

  • Volume: 26, Issue: 2, page 137-145
  • ISSN: 1804-1388

Abstract

top
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced ( 0 , 2 ) -tensor on the tangent bundle using these structures and Liouville 1 -form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.

How to cite

top

Baghban, Amir, and Abedi, Esmaeil. "A new class of almost complex structures on tangent bundle of a Riemannian manifold." Communications in Mathematics 26.2 (2018): 137-145. <http://eudml.org/doc/294697>.

@article{Baghban2018,
abstract = {In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.},
author = {Baghban, Amir, Abedi, Esmaeil},
journal = {Communications in Mathematics},
keywords = {Almost complex structure; curvature operator; integrability; tangent bundle},
language = {eng},
number = {2},
pages = {137-145},
publisher = {University of Ostrava},
title = {A new class of almost complex structures on tangent bundle of a Riemannian manifold},
url = {http://eudml.org/doc/294697},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Baghban, Amir
AU - Abedi, Esmaeil
TI - A new class of almost complex structures on tangent bundle of a Riemannian manifold
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 137
EP - 145
AB - In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
LA - eng
KW - Almost complex structure; curvature operator; integrability; tangent bundle
UR - http://eudml.org/doc/294697
ER -

References

top
  1. Abbassi, M.T.K., Calvaruso, G., Perrone, D., 10.1093/qmath/hap040, Q. J. Math., 62, 2, 2011, 259-288, (2011) MR2805204DOI10.1093/qmath/hap040
  2. Aguilar, R. M., 10.1007/BF02568316, Manuscripta Math., 90, 4, 1996, 429-436, (1996) MR1403714DOI10.1007/BF02568316
  3. Biswas, I., Loftin, J., Stemmler, M., 10.1007/s40065-012-0064-8, Arabian Journal of Mathematics, 2, 2, 2013, 159-175, (2013) MR3055288DOI10.1007/s40065-012-0064-8
  4. Choi, J., Mullhaupt, A. P., 10.3390/e17041581, Entropy, 17, 2015, 1581-1605, (2015) MR3344374DOI10.3390/e17041581
  5. Friswell, R. M., Wood, C. M., 10.1016/j.geomphys.2016.10.015, Journal of Geometry and Physics, 112, 2017, 45-58, (2017) MR3588756DOI10.1016/j.geomphys.2016.10.015
  6. Lisi, S.T., Applications of Symplectic Geometry to Hamiltonian Mechanics, 2006, PhD thesis, New York University. (2006) MR2708404
  7. Petersen, P., Riemannian Geometry, 2006, Springer, (2006) Zbl1220.53002MR2243772
  8. Peyghan, E., Heydari, A., Far, L. Nourmohammadi, 10.4064/ap103-3-2, Annales Polonici Mathematici, 103, 2012, 229-246, (2012) MR2876391DOI10.4064/ap103-3-2
  9. Peyghan, E., Nasrabadi, H., Tayebi, A., The homogenous lift to the ( 1 , 1 ) -tensor bundle of a Riemannian metric, Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p, (2013) MR3037240
  10. Salimov, A. A., Gezer, A., 10.1007/s11401-011-0646-3, Chinese Ann. Math. Ser. B, 32, 3, 2011, 1-18, (2011) MR2805406DOI10.1007/s11401-011-0646-3
  11. Zhang, J., Li, F., Symplectic and Kähler structures on statistical manifolds induced from divergence functions, Conference paper in Geometric Science of Information, 2013, 595-603, Springer, (2013) MR3126092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.