Characterization of functions whose forward differences are exponential polynomials
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 4, page 435-442
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlmira, J. M.. "Characterization of functions whose forward differences are exponential polynomials." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 435-442. <http://eudml.org/doc/294704>.
@article{Almira2017,
abstract = {Given $\lbrace h_1,\cdots ,h_\{t\}\rbrace $ a finite subset of $\mathbb \{R\}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb \{R\}^d$ with the property that the forward differences $\Delta _\{h_k\}^\{m_k\}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots ,m_t$.},
author = {Almira, J. M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {functional equations; exponential polynomials; generalized functions; forward differences},
language = {eng},
number = {4},
pages = {435-442},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Characterization of functions whose forward differences are exponential polynomials},
url = {http://eudml.org/doc/294704},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Almira, J. M.
TI - Characterization of functions whose forward differences are exponential polynomials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 435
EP - 442
AB - Given $\lbrace h_1,\cdots ,h_{t}\rbrace $ a finite subset of $\mathbb {R}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb {R}^d$ with the property that the forward differences $\Delta _{h_k}^{m_k}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots ,m_t$.
LA - eng
KW - functional equations; exponential polynomials; generalized functions; forward differences
UR - http://eudml.org/doc/294704
ER -
References
top- Aksoy A., Almira J.M., 10.1007/s00010-014-0329-8, Aequationes Math. 89 (2015), no. 5, 1335–1357. Zbl1337.47051MR3390165DOI10.1007/s00010-014-0329-8
- Almira J.M., 10.1080/01630563.2013.813537, Numer. Funct. Anal. Optim. 35 (4) (2014), 389–403. Zbl1327.47005MR3177061DOI10.1080/01630563.2013.813537
- Almira J.M., Abu-Helaiel K.F., On Montel's theorem in several variables, Carpathian J. Math. 31 (2015), 1–10. Zbl1349.47007MR3408590
- Almira J.M., Székelyhidi L., 10.1007/s00010-014-0308-0, Aequationes Math. 89 (2015), 329-338. Zbl1321.43007MR3340213DOI10.1007/s00010-014-0308-0
- Almira J.M., Székelyhidi L., Montel–type theorems for exponential polynomials, Demonstr. Math. 49 (2016), no. 2, 197–212. Zbl1344.43002MR3507933
- Anselone P.M., Korevaar J., 10.1090/S0002-9939-1964-0169048-7, Proc. Amer. Math. Soc. 15 (1964), 747–752. Zbl0138.37903MR0169048DOI10.1090/S0002-9939-1964-0169048-7
- Hardy G.H., Wright E.M., An Introduction to the Theory of Numbers. Fifth edition, The Clarendon Press, Oxford University Press, New York, 1979. MR0568909
- Waldschmidt M., Topologie des Points Rationnels, Cours de Troisième Cycle 1994/95 Université P. et M. Curie (Paris VI), 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.