A note on the cohomology ring of the oriented Grassmann manifolds G ˜ n , 4

Tomáš Rusin

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 5, page 319-331
  • ISSN: 0044-8753

Abstract

top
We use known results on the characteristic rank of the canonical 4 –plane bundle over the oriented Grassmann manifold G ˜ n , 4 to compute the generators of the 2 –cohomology groups H j ( G ˜ n , 4 ) for n = 8 , 9 , 10 , 11 . Drawing from the similarities of these examples with the general description of the cohomology rings of G ˜ n , 3 we conjecture some predictions.

How to cite

top

Rusin, Tomáš. "A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$." Archivum Mathematicum 055.5 (2019): 319-331. <http://eudml.org/doc/294713>.

@article{Rusin2019,
abstract = {We use known results on the characteristic rank of the canonical $4$–plane bundle over the oriented Grassmann manifold $\widetilde\{G\}_\{n,4\}$ to compute the generators of the $\mathbb \{Z\}_2$–cohomology groups $H^j(\widetilde\{G\}_\{n,4\})$ for $n=8,9,10,11$. Drawing from the similarities of these examples with the general description of the cohomology rings of $\widetilde\{G\}_\{n,3\}$ we conjecture some predictions.},
author = {Rusin, Tomáš},
journal = {Archivum Mathematicum},
keywords = {oriented Grassmann manifold; characteristic rank; Stiefel-Whitney class},
language = {eng},
number = {5},
pages = {319-331},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde\{G\}_\{n,4\}$},
url = {http://eudml.org/doc/294713},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Rusin, Tomáš
TI - A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 5
SP - 319
EP - 331
AB - We use known results on the characteristic rank of the canonical $4$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,4}$ to compute the generators of the $\mathbb {Z}_2$–cohomology groups $H^j(\widetilde{G}_{n,4})$ for $n=8,9,10,11$. Drawing from the similarities of these examples with the general description of the cohomology rings of $\widetilde{G}_{n,3}$ we conjecture some predictions.
LA - eng
KW - oriented Grassmann manifold; characteristic rank; Stiefel-Whitney class
UR - http://eudml.org/doc/294713
ER -

References

top
  1. Basu, S., Chakraborty, P., On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, arXiv:1712.00284v1 [math.AT]. 
  2. Borel, A., 10.1007/BF02564561, Comment. Math. Helv. 27 (1953), 165–197. (1953) MR0057541DOI10.1007/BF02564561
  3. Korbaš, J., 10.36045/bbms/1267798499, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. (2010) MR2656672DOI10.36045/bbms/1267798499
  4. Korbaš, J., Rusin, T., A note on the 2 -cohomology algebra of oriented Grassmann manifolds, Rend. Circ. Mat. Palermo, II. Ser. 65 (2016), 507–517. (2016) MR3571326
  5. Korbaš, J., Rusin, T., 10.4310/HHA.2016.v18.n2.a4, Homology Homotopy Appl. 18 (2) (2016), 71–84. (2016) MR3518983DOI10.4310/HHA.2016.v18.n2.a4
  6. Milnor, J., Stasheff, J., Characteristic Classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. (1974) Zbl0298.57008MR0440554
  7. Naolekar, A.C., Thakur, A.S., 10.2478/s12175-014-0289-4, Math. Slovaca 64 (2014), 1525–1540. (2014) MR3298036DOI10.2478/s12175-014-0289-4
  8. Prvulović, B.I., Radovanović, M., 10.4064/fm470-3-2018, Fundamenta Mathematicae 244 (2019), 167–190. (2019) MR3874670DOI10.4064/fm470-3-2018
  9. Stong, R.E., 10.1016/0022-4049(84)90029-X, J. Pure Appl. Alg. 33 (1984), 97–103. (1984) MR0750235DOI10.1016/0022-4049(84)90029-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.