On the Győry-Sárközy-Stewart conjecture in function fields

Igor E. Shparlinski

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1067-1077
  • ISSN: 0011-4642

Abstract

top
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) for distinct positive integers a , b and c . In particular, we show that, under some natural conditions on rational functions F , G , H ( X ) , the number of distinct zeros and poles of the shifted products F H + 1 and G H + 1 grows linearly with deg H if deg H max { deg F , deg G } . We also obtain a version of this result for rational functions over a finite field.

How to cite

top

Shparlinski, Igor E.. "On the Győry-Sárközy-Stewart conjecture in function fields." Czechoslovak Mathematical Journal 68.4 (2018): 1067-1077. <http://eudml.org/doc/294717>.

@article{Shparlinski2018,
abstract = {We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in \{\mathbb \{C\}\}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \lbrace \deg F, \deg G\rbrace $. We also obtain a version of this result for rational functions over a finite field.},
author = {Shparlinski, Igor E.},
journal = {Czechoslovak Mathematical Journal},
keywords = {shifted polynomial product; number of zeros},
language = {eng},
number = {4},
pages = {1067-1077},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Győry-Sárközy-Stewart conjecture in function fields},
url = {http://eudml.org/doc/294717},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Shparlinski, Igor E.
TI - On the Győry-Sárközy-Stewart conjecture in function fields
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1067
EP - 1077
AB - We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in {\mathbb {C}}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \lbrace \deg F, \deg G\rbrace $. We also obtain a version of this result for rational functions over a finite field.
LA - eng
KW - shifted polynomial product; number of zeros
UR - http://eudml.org/doc/294717
ER -

References

top
  1. Amoroso, F., Sombra, M., Zannier, U., 10.1007/s00209-017-1860-9, Math. Z. 287 (2017), 1065-1081. (2017) Zbl06819407MR3719528DOI10.1007/s00209-017-1860-9
  2. Bernstein, D. J., 10.5802/jtnb.515, J. Th{é}or. Nombres Bordx. 17 (2005), 721-725. (2005) Zbl1093.11019MR2212120DOI10.5802/jtnb.515
  3. Bombieri, E., Habegger, P., Masser, D., Zannier, U., 10.4171/RLM/570, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 21 (2010), 251-260. (2010) Zbl1209.11057MR2677603DOI10.4171/RLM/570
  4. Bombieri, E., Masser, D., Zannier, U., 10.1155/S1073792899000628, Int. Math. Res. Not. 20 (1999), 1119-1140. (1999) Zbl0938.11031MR1728021DOI10.1155/S1073792899000628
  5. Bombieri, E., Masser, D., Zannier, U., 10.4064/aa133-4-2, Acta Arith. 133 (2008), 309-323. (2008) Zbl1162.11031MR2457263DOI10.4064/aa133-4-2
  6. Bugeaud, Y., Luca, F., 10.4064/aa114-3-3, Acta Arith. 114 (2004), 275-294. (2004) Zbl1122.11060MR2071083DOI10.4064/aa114-3-3
  7. Corvaja, P., Zannier, U., 10.1090/S0002-9939-02-06771-0, Proc. Am. Math. Soc. 131 (2003), 1705-1709. (2003) Zbl1077.11052MR1955256DOI10.1090/S0002-9939-02-06771-0
  8. Corvaja, P., Zannier, U., 10.1090/S1056-3911-07-00489-4, J. Algebr. Geom. 17 (2008), 295-333. (2008) Zbl1221.11146MR2369088DOI10.1090/S1056-3911-07-00489-4
  9. Corvaja, P., Zannier, U., 10.24033/bsmf.2613, Bull. Soc. Math. Fr. 139 (2011), 437-454. (2011) Zbl1252.11031MR2869299DOI10.24033/bsmf.2613
  10. Corvaja, P., Zannier, U., 10.4171/JEMS/409, J. Eur. Math. Soc. (JEMS) 15 (2013), 1927-1942. (2013) Zbl1325.11060MR3082249DOI10.4171/JEMS/409
  11. Győry, K., Sárközy, A., 10.4064/aa-79-2-163-171, Acta Arith. 79 (1997), 163-171. (1997) Zbl0869.11071MR1438599DOI10.4064/aa-79-2-163-171
  12. Győry, K., Sárközy, A., Stewart, C. L., 10.4064/aa-74-4-365-385, Acta Arith. 74 (1996), 365-385. (1996) Zbl0857.11047MR1378230DOI10.4064/aa-74-4-365-385
  13. Habegger, P., Pila, J., 10.1112/S0010437X11005604, Compos. Math. 148 (2012), 1-27. (2012) Zbl1288.11062MR2881307DOI10.1112/S0010437X11005604
  14. Hernández, S., Luca, F., On the largest prime factor of ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) , Bol. Soc. Mat. Mex., III. Ser. 9 (2003), 235-244. (2003) Zbl1108.11030MR2029272
  15. Mason, R. C., 10.1017/CBO9780511752490, London Mathematical Society Lecture Note Series 96, Cambridge University Press, Cambridge (1984). (1984) Zbl0533.10012MR0754559DOI10.1017/CBO9780511752490
  16. Maurin, G., 10.1093/imrn/rnq248, Int. Math. Res. Not. 2011 (2011), Article no. 23, 5259-5366 French. (2011) Zbl1239.14020MR2855071DOI10.1093/imrn/rnq248
  17. Ostafe, A., 10.1007/s00605-016-0911-3, Monatsh. Math. 181 (2016), 451-471. (2016) Zbl1355.11103MR3539944DOI10.1007/s00605-016-0911-3
  18. Silverman, J. H., 10.1017/S0305004100061235, Math. Proc. Camb. Philos. Soc. 95 (1984), 3-4. (1984) Zbl0533.10013MR0727073DOI10.1017/S0305004100061235
  19. Stewart, C. L., Tijdeman, R., 10.4064/aa-79-1-93-101, Acta Arith. 79 (1997), 93-101. (1997) Zbl0869.11072MR1438120DOI10.4064/aa-79-1-93-101
  20. Stothers, W. W., 10.1093/qmath/32.3.349, Q. J. Math., Oxf. II. Ser. 32 (1981), 349-370. (1981) Zbl0466.12011MR0625647DOI10.1093/qmath/32.3.349
  21. Zannier, U., 10.1515/9781400842711, Annals of Mathematics Studies 181, Princeton University Press, Princeton (2012). (2012) Zbl1246.14003MR2918151DOI10.1515/9781400842711

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.