On the Győry-Sárközy-Stewart conjecture in function fields
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 1067-1077
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShparlinski, Igor E.. "On the Győry-Sárközy-Stewart conjecture in function fields." Czechoslovak Mathematical Journal 68.4 (2018): 1067-1077. <http://eudml.org/doc/294717>.
@article{Shparlinski2018,
abstract = {We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in \{\mathbb \{C\}\}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \lbrace \deg F, \deg G\rbrace $. We also obtain a version of this result for rational functions over a finite field.},
author = {Shparlinski, Igor E.},
journal = {Czechoslovak Mathematical Journal},
keywords = {shifted polynomial product; number of zeros},
language = {eng},
number = {4},
pages = {1067-1077},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Győry-Sárközy-Stewart conjecture in function fields},
url = {http://eudml.org/doc/294717},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Shparlinski, Igor E.
TI - On the Győry-Sárközy-Stewart conjecture in function fields
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1067
EP - 1077
AB - We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in {\mathbb {C}}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \lbrace \deg F, \deg G\rbrace $. We also obtain a version of this result for rational functions over a finite field.
LA - eng
KW - shifted polynomial product; number of zeros
UR - http://eudml.org/doc/294717
ER -
References
top- Amoroso, F., Sombra, M., Zannier, U., 10.1007/s00209-017-1860-9, Math. Z. 287 (2017), 1065-1081. (2017) Zbl06819407MR3719528DOI10.1007/s00209-017-1860-9
- Bernstein, D. J., 10.5802/jtnb.515, J. Th{é}or. Nombres Bordx. 17 (2005), 721-725. (2005) Zbl1093.11019MR2212120DOI10.5802/jtnb.515
- Bombieri, E., Habegger, P., Masser, D., Zannier, U., 10.4171/RLM/570, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 21 (2010), 251-260. (2010) Zbl1209.11057MR2677603DOI10.4171/RLM/570
- Bombieri, E., Masser, D., Zannier, U., 10.1155/S1073792899000628, Int. Math. Res. Not. 20 (1999), 1119-1140. (1999) Zbl0938.11031MR1728021DOI10.1155/S1073792899000628
- Bombieri, E., Masser, D., Zannier, U., 10.4064/aa133-4-2, Acta Arith. 133 (2008), 309-323. (2008) Zbl1162.11031MR2457263DOI10.4064/aa133-4-2
- Bugeaud, Y., Luca, F., 10.4064/aa114-3-3, Acta Arith. 114 (2004), 275-294. (2004) Zbl1122.11060MR2071083DOI10.4064/aa114-3-3
- Corvaja, P., Zannier, U., 10.1090/S0002-9939-02-06771-0, Proc. Am. Math. Soc. 131 (2003), 1705-1709. (2003) Zbl1077.11052MR1955256DOI10.1090/S0002-9939-02-06771-0
- Corvaja, P., Zannier, U., 10.1090/S1056-3911-07-00489-4, J. Algebr. Geom. 17 (2008), 295-333. (2008) Zbl1221.11146MR2369088DOI10.1090/S1056-3911-07-00489-4
- Corvaja, P., Zannier, U., 10.24033/bsmf.2613, Bull. Soc. Math. Fr. 139 (2011), 437-454. (2011) Zbl1252.11031MR2869299DOI10.24033/bsmf.2613
- Corvaja, P., Zannier, U., 10.4171/JEMS/409, J. Eur. Math. Soc. (JEMS) 15 (2013), 1927-1942. (2013) Zbl1325.11060MR3082249DOI10.4171/JEMS/409
- Győry, K., Sárközy, A., 10.4064/aa-79-2-163-171, Acta Arith. 79 (1997), 163-171. (1997) Zbl0869.11071MR1438599DOI10.4064/aa-79-2-163-171
- Győry, K., Sárközy, A., Stewart, C. L., 10.4064/aa-74-4-365-385, Acta Arith. 74 (1996), 365-385. (1996) Zbl0857.11047MR1378230DOI10.4064/aa-74-4-365-385
- Habegger, P., Pila, J., 10.1112/S0010437X11005604, Compos. Math. 148 (2012), 1-27. (2012) Zbl1288.11062MR2881307DOI10.1112/S0010437X11005604
- Hernández, S., Luca, F., On the largest prime factor of , Bol. Soc. Mat. Mex., III. Ser. 9 (2003), 235-244. (2003) Zbl1108.11030MR2029272
- Mason, R. C., 10.1017/CBO9780511752490, London Mathematical Society Lecture Note Series 96, Cambridge University Press, Cambridge (1984). (1984) Zbl0533.10012MR0754559DOI10.1017/CBO9780511752490
- Maurin, G., 10.1093/imrn/rnq248, Int. Math. Res. Not. 2011 (2011), Article no. 23, 5259-5366 French. (2011) Zbl1239.14020MR2855071DOI10.1093/imrn/rnq248
- Ostafe, A., 10.1007/s00605-016-0911-3, Monatsh. Math. 181 (2016), 451-471. (2016) Zbl1355.11103MR3539944DOI10.1007/s00605-016-0911-3
- Silverman, J. H., 10.1017/S0305004100061235, Math. Proc. Camb. Philos. Soc. 95 (1984), 3-4. (1984) Zbl0533.10013MR0727073DOI10.1017/S0305004100061235
- Stewart, C. L., Tijdeman, R., 10.4064/aa-79-1-93-101, Acta Arith. 79 (1997), 93-101. (1997) Zbl0869.11072MR1438120DOI10.4064/aa-79-1-93-101
- Stothers, W. W., 10.1093/qmath/32.3.349, Q. J. Math., Oxf. II. Ser. 32 (1981), 349-370. (1981) Zbl0466.12011MR0625647DOI10.1093/qmath/32.3.349
- Zannier, U., 10.1515/9781400842711, Annals of Mathematics Studies 181, Princeton University Press, Princeton (2012). (2012) Zbl1246.14003MR2918151DOI10.1515/9781400842711
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.