Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo; Jianjun Liu

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 513-522
  • ISSN: 0011-4642

Abstract

top
A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

How to cite

top

Guo, Pengfei, and Liu, Jianjun. "Finite groups whose all proper subgroups are $\mathcal {C}$-groups." Czechoslovak Mathematical Journal 68.2 (2018): 513-522. <http://eudml.org/doc/294719>.

@article{Guo2018,
abstract = {A group $G$ is said to be a $\mathcal \{C\}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal \{C\}$-groups but all of whose proper subgroups are $\mathcal \{C\}$-groups.},
author = {Guo, Pengfei, Liu, Jianjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {normal subgroup; abnormal subgroup; minimal non-$\mathcal \{C\}$-group},
language = {eng},
number = {2},
pages = {513-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite groups whose all proper subgroups are $\mathcal \{C\}$-groups},
url = {http://eudml.org/doc/294719},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Guo, Pengfei
AU - Liu, Jianjun
TI - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 513
EP - 522
AB - A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
LA - eng
KW - normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
UR - http://eudml.org/doc/294719
ER -

References

top
  1. Ballester-Bolinches, A., Esteban-Romero, R., 10.4171/RMI/488, Rev. Mat. Iberoam. 23 (2007), 127-142. (2007) Zbl1126.20013MR2351128DOI10.4171/RMI/488
  2. Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S., 10.1090/S0002-9939-05-07996-7, Proc. Am. Math. Soc. 133 (2005), 3455-3462. (2005) Zbl1082.20006MR2163579DOI10.1090/S0002-9939-05-07996-7
  3. Doerk, K., 10.1007/BF01312426, Math. Z. 91 (1966), 198-205 German. (1966) Zbl0135.05401MR0191962DOI10.1007/BF01312426
  4. Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
  5. Laffey, T. J., 10.1017/S0305004100048350, Proc. Camb. Philos. Soc. 75 (1974), 133-137. (1974) Zbl0277.20022MR0332961DOI10.1017/S0305004100048350
  6. Liu, J., Li, S., He, J., 10.1016/j.jalgebra.2012.03.042, J. Algebra 362 (2012), 99-106. (2012) Zbl1261.20027MR2921632DOI10.1016/j.jalgebra.2012.03.042
  7. Miller, G. A., Moreno, H. C., 10.1090/S0002-9947-1903-1500650-9, Trans. Amer. Math. Soc. 4 (1903), 398-404 9999JFM99999 34.0173.01. (1903) MR1500650DOI10.1090/S0002-9947-1903-1500650-9
  8. Robinson, D. J. S., 10.1007/978-1-4684-0128-8, Graduate Texts in Mathematics 80, Springer, New York (1982). (1982) Zbl0483.20001MR0648604DOI10.1007/978-1-4684-0128-8
  9. Šmidt, O. J., Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind, Math. Sbornik 31 (1924), 366-372 Russian with German résumé 9999JFM99999 50.0076.04. (1924) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.