Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo; Jianjun Liu

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 513-522
  • ISSN: 0011-4642

Abstract

top
A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

How to cite

top

Guo, Pengfei, and Liu, Jianjun. "Finite groups whose all proper subgroups are $\mathcal {C}$-groups." Czechoslovak Mathematical Journal 68.2 (2018): 513-522. <http://eudml.org/doc/294719>.

@article{Guo2018,
abstract = {A group $G$ is said to be a $\mathcal \{C\}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal \{C\}$-groups but all of whose proper subgroups are $\mathcal \{C\}$-groups.},
author = {Guo, Pengfei, Liu, Jianjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {normal subgroup; abnormal subgroup; minimal non-$\mathcal \{C\}$-group},
language = {eng},
number = {2},
pages = {513-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite groups whose all proper subgroups are $\mathcal \{C\}$-groups},
url = {http://eudml.org/doc/294719},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Guo, Pengfei
AU - Liu, Jianjun
TI - Finite groups whose all proper subgroups are $\mathcal {C}$-groups
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 513
EP - 522
AB - A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups.
LA - eng
KW - normal subgroup; abnormal subgroup; minimal non-$\mathcal {C}$-group
UR - http://eudml.org/doc/294719
ER -

References

top
  1. Ballester-Bolinches, A., Esteban-Romero, R., 10.4171/RMI/488, Rev. Mat. Iberoam. 23 (2007), 127-142. (2007) Zbl1126.20013MR2351128DOI10.4171/RMI/488
  2. Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S., 10.1090/S0002-9939-05-07996-7, Proc. Am. Math. Soc. 133 (2005), 3455-3462. (2005) Zbl1082.20006MR2163579DOI10.1090/S0002-9939-05-07996-7
  3. Doerk, K., 10.1007/BF01312426, Math. Z. 91 (1966), 198-205 German. (1966) Zbl0135.05401MR0191962DOI10.1007/BF01312426
  4. Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
  5. Laffey, T. J., 10.1017/S0305004100048350, Proc. Camb. Philos. Soc. 75 (1974), 133-137. (1974) Zbl0277.20022MR0332961DOI10.1017/S0305004100048350
  6. Liu, J., Li, S., He, J., 10.1016/j.jalgebra.2012.03.042, J. Algebra 362 (2012), 99-106. (2012) Zbl1261.20027MR2921632DOI10.1016/j.jalgebra.2012.03.042
  7. Miller, G. A., Moreno, H. C., 10.1090/S0002-9947-1903-1500650-9, Trans. Amer. Math. Soc. 4 (1903), 398-404 9999JFM99999 34.0173.01. (1903) MR1500650DOI10.1090/S0002-9947-1903-1500650-9
  8. Robinson, D. J. S., 10.1007/978-1-4684-0128-8, Graduate Texts in Mathematics 80, Springer, New York (1982). (1982) Zbl0483.20001MR0648604DOI10.1007/978-1-4684-0128-8
  9. Šmidt, O. J., Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind, Math. Sbornik 31 (1924), 366-372 Russian with German résumé 9999JFM99999 50.0076.04. (1924) 

NotesEmbed ?

top

You must be logged in to post comments.