On the number of isomorphism classes of derived subgroups
Leyli Jafari Taghvasani; Soran Marzang; Mohammad Zarrin
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 665-670
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTaghvasani, Leyli Jafari, Marzang, Soran, and Zarrin, Mohammad. "On the number of isomorphism classes of derived subgroups." Czechoslovak Mathematical Journal 69.3 (2019): 665-670. <http://eudml.org/doc/294720>.
@article{Taghvasani2019,
abstract = {We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).},
author = {Taghvasani, Leyli Jafari, Marzang, Soran, Zarrin, Mohammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {derived subgroup; simple group},
language = {eng},
number = {3},
pages = {665-670},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the number of isomorphism classes of derived subgroups},
url = {http://eudml.org/doc/294720},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Taghvasani, Leyli Jafari
AU - Marzang, Soran
AU - Zarrin, Mohammad
TI - On the number of isomorphism classes of derived subgroups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 665
EP - 670
AB - We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).
LA - eng
KW - derived subgroup; simple group
UR - http://eudml.org/doc/294720
ER -
References
top- Barry, M. J. J., Ward, M. B., 10.5565/PUBLMAT_41297_07, Publ. Mat., Barc. 41 (1997), 411-415. (1997) Zbl0894.20019MR1485492DOI10.5565/PUBLMAT_41297_07
- Group, The GAP, GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4, (2005), Available at http://www.gap-system.org. SW: https://swmath.org/software/320 (2005)
- Giovanni, F. de, Robinson, D. J. S., 10.1112/S0024610705006484, J. Lond. Math. Soc., II. Ser. 71 (2005), 658-668. (2005) Zbl1084.20026MR2132376DOI10.1112/S0024610705006484
- Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 10 (1968), 383-388. (1968) Zbl0167.29101MR0233881DOI10.1016/0021-8693(68)90088-4
- Herzog, M., Longobardi, P., Maj, M., 10.1090/conm/402, Ischia Group Theory 2004 Z. Arad et al. Contemporary Mathematics 402, American Mathematical Society, Providence (2006), 181-192. (2006) Zbl1122.20017MR2258662DOI10.1090/conm/402
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Liebeck, M. W., O'Brien, E. A., Shalev, A., Tiep, P. H., 10.4171/JEMS/220, J. Eur. Math. Soc. (JEMS) 12 (2010), 939-1008. (2010) Zbl1205.20011MR2654085DOI10.4171/JEMS/220
- Longobardi, P., Maj, M., Robinson, D. J. S., 10.1016/j.jalgebra.2013.06.036, J. Algebra 393 (2013), 102-119. (2013) Zbl1294.20049MR3090061DOI10.1016/j.jalgebra.2013.06.036
- Longobardi, P., Maj, M., Robinson, D. J. S., Smith, H., 10.1017/S0017089512000821, Glasg. Math. J. 55 (2013), 655-668. (2013) Zbl1287.20046MR3084668DOI10.1017/S0017089512000821
- Shi, W., On simple -groups, Chin. Sci. Bull. 36 (1991), 1281-1283. (1991)
- Zarrin, M., 10.1142/S0219498814500455, J. Algebra Appl. 13 (2014), Article ID 1450045, 5 pages. (2014) Zbl1303.20044MR3200123DOI10.1142/S0219498814500455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.