On the number of isomorphism classes of derived subgroups

Leyli Jafari Taghvasani; Soran Marzang; Mohammad Zarrin

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 665-670
  • ISSN: 0011-4642

Abstract

top
We show that a finite nonabelian characteristically simple group G satisfies n = | π ( G ) | + 2 if and only if G A 5 , where n is the number of isomorphism classes of derived subgroups of G and π ( G ) is the set of prime divisors of the group G . Also, we give a negative answer to a question raised in M. Zarrin (2014).

How to cite

top

Taghvasani, Leyli Jafari, Marzang, Soran, and Zarrin, Mohammad. "On the number of isomorphism classes of derived subgroups." Czechoslovak Mathematical Journal 69.3 (2019): 665-670. <http://eudml.org/doc/294720>.

@article{Taghvasani2019,
abstract = {We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).},
author = {Taghvasani, Leyli Jafari, Marzang, Soran, Zarrin, Mohammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {derived subgroup; simple group},
language = {eng},
number = {3},
pages = {665-670},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the number of isomorphism classes of derived subgroups},
url = {http://eudml.org/doc/294720},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Taghvasani, Leyli Jafari
AU - Marzang, Soran
AU - Zarrin, Mohammad
TI - On the number of isomorphism classes of derived subgroups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 665
EP - 670
AB - We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).
LA - eng
KW - derived subgroup; simple group
UR - http://eudml.org/doc/294720
ER -

References

top
  1. Barry, M. J. J., Ward, M. B., 10.5565/PUBLMAT_41297_07, Publ. Mat., Barc. 41 (1997), 411-415. (1997) Zbl0894.20019MR1485492DOI10.5565/PUBLMAT_41297_07
  2. Group, The GAP, GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4, (2005), Available at http://www.gap-system.org. SW: https://swmath.org/software/320 (2005) 
  3. Giovanni, F. de, Robinson, D. J. S., 10.1112/S0024610705006484, J. Lond. Math. Soc., II. Ser. 71 (2005), 658-668. (2005) Zbl1084.20026MR2132376DOI10.1112/S0024610705006484
  4. Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 10 (1968), 383-388. (1968) Zbl0167.29101MR0233881DOI10.1016/0021-8693(68)90088-4
  5. Herzog, M., Longobardi, P., Maj, M., 10.1090/conm/402, Ischia Group Theory 2004 Z. Arad et al. Contemporary Mathematics 402, American Mathematical Society, Providence (2006), 181-192. (2006) Zbl1122.20017MR2258662DOI10.1090/conm/402
  6. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  7. Liebeck, M. W., O'Brien, E. A., Shalev, A., Tiep, P. H., 10.4171/JEMS/220, J. Eur. Math. Soc. (JEMS) 12 (2010), 939-1008. (2010) Zbl1205.20011MR2654085DOI10.4171/JEMS/220
  8. Longobardi, P., Maj, M., Robinson, D. J. S., 10.1016/j.jalgebra.2013.06.036, J. Algebra 393 (2013), 102-119. (2013) Zbl1294.20049MR3090061DOI10.1016/j.jalgebra.2013.06.036
  9. Longobardi, P., Maj, M., Robinson, D. J. S., Smith, H., 10.1017/S0017089512000821, Glasg. Math. J. 55 (2013), 655-668. (2013) Zbl1287.20046MR3084668DOI10.1017/S0017089512000821
  10. Shi, W., On simple K 4 -groups, Chin. Sci. Bull. 36 (1991), 1281-1283. (1991) 
  11. Zarrin, M., 10.1142/S0219498814500455, J. Algebra Appl. 13 (2014), Article ID 1450045, 5 pages. (2014) Zbl1303.20044MR3200123DOI10.1142/S0219498814500455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.