Some functorial prolongations of general connections
Archivum Mathematicum (2018)
- Volume: 054, Issue: 2, page 111-117
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKolář, Ivan. "Some functorial prolongations of general connections." Archivum Mathematicum 054.2 (2018): 111-117. <http://eudml.org/doc/294722>.
@article{Kolář2018,
abstract = {We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.},
author = {Kolář, Ivan},
journal = {Archivum Mathematicum},
keywords = {general connection; tangent valued form; functorial prolongation; Weil functor},
language = {eng},
number = {2},
pages = {111-117},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some functorial prolongations of general connections},
url = {http://eudml.org/doc/294722},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Kolář, Ivan
TI - Some functorial prolongations of general connections
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 2
SP - 111
EP - 117
AB - We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.
LA - eng
KW - general connection; tangent valued form; functorial prolongation; Weil functor
UR - http://eudml.org/doc/294722
ER -
References
top- Cabras, A., Kolář, I., Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (1995), 139–145. (1995) MR1357981
- Ehresmann, C., Oeuvres complètes et commentés, Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983). (1983)
- Kolář, I., Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625–665, Elsevier, Amsterdam, 2008. (2008) MR2389643
- Kolář, I., 10.18514/MMN.2013.903, Miskolc Math. Notes 14 (2013), 423–431. (2013) MR3144079DOI10.18514/MMN.2013.903
- Kolář, I., Covariant Approach to Weil Bundles, Folia, Masaryk University, Brno (2016). (2016)
- Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993)
- Mangiarotti, L., Modugno, M., Graded Lie algebras and connections on a fibered space, J. Math. Pures Appl. (9) 63 (1984), 111–120. (1984)
- Weil, A., Théorie des points proches sur les variétes différentielles, Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. (1953)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.