Some functorial prolongations of general connections

Ivan Kolář

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 2, page 111-117
  • ISSN: 0044-8753

Abstract

top
We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.

How to cite

top

Kolář, Ivan. "Some functorial prolongations of general connections." Archivum Mathematicum 054.2 (2018): 111-117. <http://eudml.org/doc/294722>.

@article{Kolář2018,
abstract = {We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.},
author = {Kolář, Ivan},
journal = {Archivum Mathematicum},
keywords = {general connection; tangent valued form; functorial prolongation; Weil functor},
language = {eng},
number = {2},
pages = {111-117},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some functorial prolongations of general connections},
url = {http://eudml.org/doc/294722},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Kolář, Ivan
TI - Some functorial prolongations of general connections
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 2
SP - 111
EP - 117
AB - We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.
LA - eng
KW - general connection; tangent valued form; functorial prolongation; Weil functor
UR - http://eudml.org/doc/294722
ER -

References

top
  1. Cabras, A., Kolář, I., Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (1995), 139–145. (1995) MR1357981
  2. Ehresmann, C., Oeuvres complètes et commentés, Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983). (1983) 
  3. Kolář, I., Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625–665, Elsevier, Amsterdam, 2008. (2008) MR2389643
  4. Kolář, I., 10.18514/MMN.2013.903, Miskolc Math. Notes 14 (2013), 423–431. (2013) MR3144079DOI10.18514/MMN.2013.903
  5. Kolář, I., Covariant Approach to Weil Bundles, Folia, Masaryk University, Brno (2016). (2016) 
  6. Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) 
  7. Mangiarotti, L., Modugno, M., Graded Lie algebras and connections on a fibered space, J. Math. Pures Appl. (9) 63 (1984), 111–120. (1984) 
  8. Weil, A., Théorie des points proches sur les variétes différentielles, Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. (1953) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.