QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations
Abdelouahab Bibi; Ahmed Ghezal
Kybernetika (2018)
- Volume: 54, Issue: 2, page 375-399
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBibi, Abdelouahab, and Ghezal, Ahmed. "QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations." Kybernetika 54.2 (2018): 375-399. <http://eudml.org/doc/294733>.
@article{Bibi2018,
abstract = {This paper develops an asymptotic inference theory for bilinear $\left( BL\right) $ time series models with periodic coefficients $\left( PBL\text\{ for short\}\right) $. For this purpose, we establish firstly a necessary and sufficient conditions for such models to have a unique stationary and ergodic solutions (in periodic sense). Secondly, we examine the consistency and the asymptotic normality of the quasi-maximum likelihood estimator $\left( QMLE\right) $ under very mild moment condition for the innovation errors. As a result, it is shown that whenever the model is strictly stationary, the moment of some positive order of $PBL$ model exists and is finite, under which the strong consistency and asymptotic normality of $QMLE$ for $PBL$ are proved. Moreover, we consider also the periodic $ARMA$$\left( PARMA\right) $ models with $PBL$ innovations and we prove the consistency and the asymptotic normality of its $QMLE$.},
author = {Bibi, Abdelouahab, Ghezal, Ahmed},
journal = {Kybernetika},
keywords = {periodic bilinear model; periodic $ARMA$ model; strict and second-order periodic stationarity; strong consistency; asymptotic normality},
language = {eng},
number = {2},
pages = {375-399},
publisher = {Institute of Information Theory and Automation AS CR},
title = {QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations},
url = {http://eudml.org/doc/294733},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Bibi, Abdelouahab
AU - Ghezal, Ahmed
TI - QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 375
EP - 399
AB - This paper develops an asymptotic inference theory for bilinear $\left( BL\right) $ time series models with periodic coefficients $\left( PBL\text{ for short}\right) $. For this purpose, we establish firstly a necessary and sufficient conditions for such models to have a unique stationary and ergodic solutions (in periodic sense). Secondly, we examine the consistency and the asymptotic normality of the quasi-maximum likelihood estimator $\left( QMLE\right) $ under very mild moment condition for the innovation errors. As a result, it is shown that whenever the model is strictly stationary, the moment of some positive order of $PBL$ model exists and is finite, under which the strong consistency and asymptotic normality of $QMLE$ for $PBL$ are proved. Moreover, we consider also the periodic $ARMA$$\left( PARMA\right) $ models with $PBL$ innovations and we prove the consistency and the asymptotic normality of its $QMLE$.
LA - eng
KW - periodic bilinear model; periodic $ARMA$ model; strict and second-order periodic stationarity; strong consistency; asymptotic normality
UR - http://eudml.org/doc/294733
ER -
References
top- Aknouche, A., Bibi, A., 10.1111/j.1467-9892.2008.00598.x, J. Time Ser. Anal. 30 (2008), 1, 19-46. MR2488634DOI10.1111/j.1467-9892.2008.00598.x
- Aknouche, A., Guerbyenne, H., 10.1016/j.spl.2008.12.012, Statist. Probab. Lett. 79 (2009), 7, 990-996. MR2509491DOI10.1016/j.spl.2008.12.012
- Aknouche, A., Bibi, A., 10.1111/j.1467-9892.2008.00598.x, J. Time Ser. Anal. 30 (2008), 1, 19-46. MR2488634DOI10.1111/j.1467-9892.2008.00598.x
- Basawa, I. V., Lund, R., 10.1111/1467-9892.00246, J. Time Series Anal. 22 (2001), 6, 651-663. MR1867391DOI10.1111/1467-9892.00246
- Bibi, A., 10.1081/sap-120017531, Stochastic Anal. App. 21 (2003), 1, 25-60. MR1954074DOI10.1081/sap-120017531
- Bibi, A., Francq, C., 10.1007/bf02530484, Ann. Inst. Statist. Math. 55 (2003), 1, 41-68. MR1965962DOI10.1007/bf02530484
- Bibi, A., Oyet, A. J., 10.1081/sap-120028595, Stochastic Anal. Appl. 22 (2004), 2, 355-376. MR2037377DOI10.1081/sap-120028595
- Bibi, A., Aknouche, A., 10.1007/s10260-008-0110-z, Statist. Methods Appl. 19 (2010), 1, 1-30. MR2591755DOI10.1007/s10260-008-0110-z
- Bibi, A., Lessak, R., 10.1016/j.spl.2008.07.024, Statist. Probab. Lett. 79 (2009), 1, 79-87. MR2483399DOI10.1016/j.spl.2008.07.024
- Bibi, A., Lescheb, I., 10.1016/j.econlet.2011.11.013, Econom. Lett. 114 (2012), 3, 353-357. MR2880617DOI10.1016/j.econlet.2011.11.013
- Bibi, A., Ghezal, A., 10.1007/s10260-015-0344-5, Stat. Methods Appl. 25 (2016), 3, 395-420. MR3539499DOI10.1007/s10260-015-0344-5
- Billingsley, P., Probability and Measure. Third edition., Wiley - Interscience 1995. MR1324786
- Bougerol, P., Picard, N., 10.1214/aop/1176989526, Ann. Probab. 20 (1992), 4, 1714-1730. MR1188039DOI10.1214/aop/1176989526
- Boyles, R. A., Gardner, W. A., 10.1109/tit.1983.1056613, IEEE, Trans. Inform. Theory 29 (1983), 105-114. MR0711279DOI10.1109/tit.1983.1056613
- Brandt, A., 10.2307/1427243, Adv. Appl. Probab. 18 (1986), 1, 211-220. MR0827336DOI10.2307/1427243
- Chatterjee, S., Das, S., 10.1081/sta-120021324, Comm. Stat. Theory Methods 32 (2003), 6, 1135-1153. MR1983236DOI10.1081/sta-120021324
- Florian, Z., 10.1007/978-3-319-13881-7_23, Time Series. Stochastic Models, Statistics and their Applications 122 (2015), 207-214. DOI10.1007/978-3-319-13881-7_23
- Francq, C., Roy, R., Saidi, A., 10.1111/j.1467-9892.2011.00728.x, J. of Time Ser. Anal. 32 (2011), 699-723. MR2846568DOI10.1111/j.1467-9892.2011.00728.x
- Francq, C., 10.1080/15326349908807524, Comm. Statist. Stochastic Models 15 (1999), 1, 29-52. MR1674085DOI10.1080/15326349908807524
- Francq, C., Zakoîan, J. M., 10.3150/bj/1093265632, Bernoulli 10 (2004), 4, 605-637. MR2076065DOI10.3150/bj/1093265632
- Gardner, W. A., Nopolitano, A., Paura, L., 10.1016/j.sigpro.2005.06.016, Signal Process. 86 (2006), 4, 639-697. DOI10.1016/j.sigpro.2005.06.016
- Gladyshev, E. G., Periodically correlated random sequences., Soviet Math. 2 (1961), 385-388. MR0126873
- Grahn, T., 10.1111/j.1467-9892.1995.tb00251.x, J. Time Series Analysis 16 (1995), 509-529. MR1365644DOI10.1111/j.1467-9892.1995.tb00251.x
- He, J., Yu, S., Cai, J., 10.1142/s0218127416502199, Int. J. Bifurcation Chaos 26 (2016), 13, 1-11. MR3590146DOI10.1142/s0218127416502199
- Kesten, H., Spitzer, F., 10.1007/bf00532045, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 67 (1984), 363-386. MR0761563DOI10.1007/bf00532045
- Kristensen, D., 10.1111/j.1467-9892.2008.00603.x, J. Time Series Anal. 30 (2009), 1, 125-144. MR2488638DOI10.1111/j.1467-9892.2008.00603.x
- Ling, S., Peng, L., Zho, F., Inference for special bilinear time series model., arXiv 2014. MR3300205
- Liu, J., 10.1080/15326349908807167, Stochastic Models 6 (1990), 649-665. MR1080415DOI10.1080/15326349908807167
- Ngatchou-W, J., 10.1214/07-ejs157, Elec. J. Stat. 2 (2008), 40-62. MR2386085DOI10.1214/07-ejs157
- Pan, J. Z., Li, G. D., Xie, Z.J., Stationary solution and parametric estimation for bilinear model driven by noises., Science in China (Series ) 45 (2002), 12, 1523-1537. MR1955672
- Pham, D. T., 10.1016/0304-4149(85)90216-9, Stoch. Proc. Appl. 20 (1983), 295-306. MR0808163DOI10.1016/0304-4149(85)90216-9
- Rao, T. Subba, Gabr, M. M., 10.1007/978-1-4684-6318-7, Lecture Notes In Statistics 24 (1984), Springer Verlag, N.Y. MR0757536DOI10.1007/978-1-4684-6318-7
- Tjøstheim, D., 10.1016/0304-4149(86)90099-2, Stoch. Proc. Appl. 21 (1986), 251-273. MR0833954DOI10.1016/0304-4149(86)90099-2
- Wittwer, G. S., 10.1080/02331888908802201, Statistics 20 (1989), 521-529. MR1047220DOI10.1080/02331888908802201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.