On some extremal problems in Bergman spaces in weakly pseudoconvex domains

Romi F. Shamoyan; Olivera R. Mihić

Communications in Mathematics (2018)

  • Volume: 26, Issue: 2, page 83-97
  • ISSN: 1804-1388

Abstract

top
We consider and solve extremal problems in various bounded weakly pseudoconvex domains in n based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces A α p in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.

How to cite

top

Shamoyan, Romi F., and Mihić, Olivera R.. "On some extremal problems in Bergman spaces in weakly pseudoconvex domains." Communications in Mathematics 26.2 (2018): 83-97. <http://eudml.org/doc/294742>.

@article{Shamoyan2018,
abstract = {We consider and solve extremal problems in various bounded weakly pseudoconvex domains in $\mathbb \{C\}^\{n\}$ based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_\{\alpha \}^\{p\}$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.},
author = {Shamoyan, Romi F., Mihić, Olivera R.},
journal = {Communications in Mathematics},
keywords = {Bergman spaces; distance estimates; pseudoconvex domains; analytic functions},
language = {eng},
number = {2},
pages = {83-97},
publisher = {University of Ostrava},
title = {On some extremal problems in Bergman spaces in weakly pseudoconvex domains},
url = {http://eudml.org/doc/294742},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Shamoyan, Romi F.
AU - Mihić, Olivera R.
TI - On some extremal problems in Bergman spaces in weakly pseudoconvex domains
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 83
EP - 97
AB - We consider and solve extremal problems in various bounded weakly pseudoconvex domains in $\mathbb {C}^{n}$ based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_{\alpha }^{p}$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.
LA - eng
KW - Bergman spaces; distance estimates; pseudoconvex domains; analytic functions
UR - http://eudml.org/doc/294742
ER -

References

top
  1. Ahn, H., Cho, S., 10.1080/17476939908815203, Complex Variables Theory Appl., 39, 4, 1999, 365-379, (1999) MR1727631DOI10.1080/17476939908815203
  2. Arsenović , M., Shamoyan, R., On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains, Bulletin Korean Math. Society, 52, 1, 2015, 85-103, (2015) MR3313426
  3. Beatrous, F., 10.1007/BF01163612, Math. Zam., 191, 1, 1986, 91-116, (1986) MR0812605DOI10.1007/BF01163612
  4. Charpentier, P., Dupain, Y., 10.5565/PUBLMAT_50206_08, Publ. Mat., 50, 2006, 413-446, (2006) MR2273668DOI10.5565/PUBLMAT_50206_08
  5. Chen, B., 10.4064/sm174-2-1, Studia Mathematica, 174, 2, 2006, 111-130, (2006) MR2238457DOI10.4064/sm174-2-1
  6. Cho, H.R., Kwon, E.G., 10.1215/ijm/1258131050, Illinois J. Math., 48, 3, 2004, 747-757, (2004) MR2114249DOI10.1215/ijm/1258131050
  7. Cho, S., 10.2748/tmj/1178225297, Tóhoku Math. Journal, 48, 1996, 533-542, (1996) MR1419083DOI10.2748/tmj/1178225297
  8. Ehsani, D., Lieb, I., 10.1002/mana.200710649, Math. Nachr., 281, 7, 2008, 916-929, (2008) MR2431567DOI10.1002/mana.200710649
  9. Gheorghe, L.G., Interpolation of Besov spaces and applications, Le Matematiche, LV, Fasc. I, 2000, 29-42, (2000) MR1888995
  10. Jevtić, M., Besov spaces on bounded symmetric domains, Matematički vesnik, 49, 1997, 229-233, (1997) MR1611753
  11. Lanzani, L., Stein, E.M., 10.1215/ijm/1380287464, Illinois Journal of Mathematics, 56, 1, 2012, 127-154, (2012) MR3117022DOI10.1215/ijm/1380287464
  12. McNeal, J.D., Stein, E.M., Mapping properties of the Bergman projection on convex domain of finite type, Duke Math. J., 73, 1994, 177-199, (1994) MR1257282
  13. Phong, D.H., Stein, E.M., Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains, Duke Math. J., 44, 1977, 695-704, (1977) MR0450623
  14. Shamoyan, R.F., Kurilenko, S.M., 10.15393/j3.art.2014.2261, Issues of Analysis, 1, 2014, 44-65, (2014) MR3352521DOI10.15393/j3.art.2014.2261
  15. Shamoyan, R.F., Mihić , O., Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in n , Journal of Function Spaces, 2014, 2014, p. 11, Article ID 975434. (2014) MR3248932
  16. Shamoyan, R.F., Mihić, O., On distance function in some new analytic Bergman type spaces in n , Journal of Function Spaces, 2014, 2014, p. 10, Article ID 275416. (2014) MR3208648
  17. Shamoyan, R.F., Mihić, O., On new estimates for distances in analytic function spaces in higher dimension, Siberian Electronic Mathematical Reports, 6, 2009, 514-517, (2009) Zbl1299.30106MR2586703
  18. Zhu, K., 10.1093/qmath/46.2.239, Quarterly J. Math., 46, 1995, 239-256, (1995) MR1333834DOI10.1093/qmath/46.2.239
  19. Zhu, K., Holomorphic Besov spaces on bounded symmetric domains, III, Indiana University Mathematical Journal, 44, 1995, 1017-1031, (1995) MR1386759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.