Bloch type spaces on the unit ball of a Hilbert space

Zhenghua Xu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 695-711
  • ISSN: 0011-4642

Abstract

top
We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.

How to cite

top

Xu, Zhenghua. "Bloch type spaces on the unit ball of a Hilbert space." Czechoslovak Mathematical Journal 69.3 (2019): 695-711. <http://eudml.org/doc/294745>.

@article{Xu2019,
abstract = {We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.},
author = {Xu, Zhenghua},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bloch type space; Lipschitz space; Hardy-Littlewood theorem; Hilbert space},
language = {eng},
number = {3},
pages = {695-711},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bloch type spaces on the unit ball of a Hilbert space},
url = {http://eudml.org/doc/294745},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Xu, Zhenghua
TI - Bloch type spaces on the unit ball of a Hilbert space
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 695
EP - 711
AB - We initiate the study of Bloch type spaces on the unit ball of a Hilbert space. As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and characterizations of some holomorphic function spaces related to the Bloch type space are presented.
LA - eng
KW - Bloch type space; Lipschitz space; Hardy-Littlewood theorem; Hilbert space
UR - http://eudml.org/doc/294745
ER -

References

top
  1. Blasco, O., Galindo, P., Miralles, A., 10.1016/j.jfa.2014.04.018, J. Funct. Anal. 267 (2014), 1188-1204. (2014) Zbl1293.32010MR3217061DOI10.1016/j.jfa.2014.04.018
  2. Chen, H., 10.1007/s11425-008-0104-1, Sci. China Ser. A 51 (2008), 1965-1981. (2008) Zbl1187.32004MR2447421DOI10.1007/s11425-008-0104-1
  3. Chen, S., Ponnusamy, S., Rasila, A., 10.1007/s00209-014-1361-z, Math. Z. 279 (2015), 163-183. (2015) Zbl1314.30116MR3299847DOI10.1007/s00209-014-1361-z
  4. Dai, J., Wang, B., 10.1186/s13660-015-0846-6, J. Inequal. Appl. 2015 (2015), 10 pages. (2015) Zbl1336.32006MR3411320DOI10.1186/s13660-015-0846-6
  5. Deng, F., Ouyang, C., 10.1007/s11425-006-2050-0, Sci. China Ser. A 49 (2006), 1625-1632. (2006) Zbl1114.32002MR2288219DOI10.1007/s11425-006-2050-0
  6. Graham, I., Kohr, G., 10.1201/9780203911624, Monographs and Textbooks in Pure and Applied Mathematics 255, Marcel Dekker, New York (2003). (2003) Zbl1042.30001MR2017933DOI10.1201/9780203911624
  7. Hahn, K. T., 10.4153/CJM-1975-053-0, Canad. J. Math 27 (1975), 446-458. (1975) Zbl0269.32014MR0466641DOI10.4153/CJM-1975-053-0
  8. Hardy, G. H., Littlewood, J. E., 10.1007/BF01180596, Math. Z. 34 (1932), 403-439. (1932) Zbl0003.15601MR1545260DOI10.1007/BF01180596
  9. Holland, F., Walsh, D., 10.1007/BF01451410, Math. Ann. 273 (1986), 317-335. (1986) Zbl0561.30025MR0817885DOI10.1007/BF01451410
  10. Krantz, S. G., Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), 193-260. (1983) Zbl0518.46018MR0782608
  11. Krantz, S. G., Ma, D., 10.1512/iumj.1988.37.37007, Indiana Univ. Math. J. 37 (1988), 145-163. (1988) Zbl0628.32006MR0942099DOI10.1512/iumj.1988.37.37007
  12. Lehto, O., Virtanen, K. I., 10.1007/BF02392392, Acta Math. 97 (1957), 47-65. (1957) Zbl0077.07702MR0087746DOI10.1007/BF02392392
  13. Li, S., Wulan, H., 10.1016/j.jmaa.2008.01.023, J. Math. Anal. Appl. 343 (2008), 58-63. (2008) Zbl1204.32006MR2409457DOI10.1016/j.jmaa.2008.01.023
  14. Nowak, M., 10.1080/17476930108815339, Complex Variables, Theory Appl. 44 (2001), 1-12. (2001) Zbl1026.32011MR1826712DOI10.1080/17476930108815339
  15. Pavlović, M., 10.1017/S0013091506001076, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 439-441. (2008) Zbl1165.30016MR2465917DOI10.1017/S0013091506001076
  16. Ren, G., Tu, C., 10.1090/S0002-9939-04-07617-8, Proc. Am. Math. Soc. 133 (2005), 719-726. (2005) Zbl1056.32005MR2113920DOI10.1090/S0002-9939-04-07617-8
  17. Ren, G., Xu, Z., 10.1007/s00006-015-0578-1, Adv. Appl. Clifford Algebr. 26 (2016), 399-416. (2016) Zbl1337.30061MR3460007DOI10.1007/s00006-015-0578-1
  18. Rudin, W., 10.1007/978-3-540-68276-9, Classics in Mathematics, Springer, Berlin (2008). (2008) Zbl1139.32001MR2446682DOI10.1007/978-3-540-68276-9
  19. Timoney, R. M., 10.1112/blms/12.4.241, Bull. Lond. Math. Soc. 12 (1980), 241-267. (1980) Zbl0416.32010MR0576974DOI10.1112/blms/12.4.241
  20. Timoney, R. M., 10.1515/crll.1980.319.1, J. Reine Angew. Math. 319 (1980), 1-22. (1980) Zbl0425.32008MR0586111DOI10.1515/crll.1980.319.1
  21. Yang, W., Ouyang, C., 10.1216/rmjm/1021477265, Rocky Mountain J. Math. 30 (2000), 1151-1169. (2000) Zbl0978.32002MR1797836DOI10.1216/rmjm/1021477265
  22. Zhang, M., Chen, H., 10.1007/s10114-011-9391-5, Acta Math., Sin. Engl. Ser. 27 (2011), 2395-2408. (2011) Zbl1262.32002MR2853797DOI10.1007/s10114-011-9391-5
  23. Zhao, R., 10.1016/j.jmaa.2006.06.100, J. Math. Anal. Appl. 330 (2007), 291-297. (2007) Zbl1118.32006MR2302923DOI10.1016/j.jmaa.2006.06.100
  24. Zhu, K., 10.1216/rmjm/1181072549, Rocky Mt. J. Math. 23 (1993), 1143-1177. (1993) Zbl0787.30019MR1245472DOI10.1216/rmjm/1181072549
  25. Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226, Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.