Inertial forward-backward splitting method in Banach spaces with application to compressed sensing
Prasit Cholamjiak; Yekini Shehu
Applications of Mathematics (2019)
- Volume: 64, Issue: 4, page 409-435
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topCholamjiak, Prasit, and Shehu, Yekini. "Inertial forward-backward splitting method in Banach spaces with application to compressed sensing." Applications of Mathematics 64.4 (2019): 409-435. <http://eudml.org/doc/294746>.
@article{Cholamjiak2019,
abstract = {We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.},
author = {Cholamjiak, Prasit, Shehu, Yekini},
journal = {Applications of Mathematics},
keywords = {inertial term; forward-backward splitting; inclusion problem; strong convergence; Banach space},
language = {eng},
number = {4},
pages = {409-435},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inertial forward-backward splitting method in Banach spaces with application to compressed sensing},
url = {http://eudml.org/doc/294746},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Cholamjiak, Prasit
AU - Shehu, Yekini
TI - Inertial forward-backward splitting method in Banach spaces with application to compressed sensing
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 409
EP - 435
AB - We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.
LA - eng
KW - inertial term; forward-backward splitting; inclusion problem; strong convergence; Banach space
UR - http://eudml.org/doc/294746
ER -
References
top- Alvarez, F., Attouch, H., 10.1023/A:1011253113155, Set-Valued Anal. 9 (2001), 3-11. (2001) Zbl0991.65056MR1845931DOI10.1023/A:1011253113155
- Attouch, H., Cabot, A., Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions, Available at https://hal.archives-ouvertes.fr/hal-01782016 (2018), Hal ID: 01782016, 35 pages. (2018) MR4026592
- Baillon, J.-B., Haddad, G., 10.1007/BF03007664, Isr. J. Math. 26 French (1977), 137-150. (1977) Zbl0352.47023MR0500279DOI10.1007/BF03007664
- Beck, A., Teboulle, M., 10.1137/080716542, SIAM J. Imaging Sci. 2 (2009), 183-202. (2009) Zbl1175.94009MR2486527DOI10.1137/080716542
- Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont (2014). (2014) Zbl1325.65001MR3587745
- Boţ, R. I., Csetnek, E. R., An inertial alternating direction method of multipliers, Minimax Theory Appl. 1 (2016), 29-49. (2016) Zbl1337.90082MR3477895
- Boţ, R. I., Csetnek, E. R., Hendrich, C., 10.1016/j.amc.2015.01.017, Appl. Math. Comput. 256 (2015), 472-487. (2015) Zbl1338.65145MR3316085DOI10.1016/j.amc.2015.01.017
- Brézis, H., Lions, P.-L., 10.1007/BF02761171, Isr. J. Math. 29 (1978), 329-345 French. (1978) Zbl0387.47038MR0491922DOI10.1007/BF02761171
- Byrne, C., 10.1088/0266-5611/20/1/006, Inverse Probl. 20 (2004), 103-120. (2004) Zbl1051.65067MR2044608DOI10.1088/0266-5611/20/1/006
- Chen, C., Chan, R. H., Ma, S., Yang, J., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (2015), 2239-2267. (2015) Zbl1328.65134MR3404682DOI10.1137/15100463X
- Chen, G. H.-G., Rockafellar, R. T., 10.1137/S1052623495290179, SIAM J. Optim. 7 (1997), 421-444. (1997) Zbl0876.49009MR1443627DOI10.1137/S1052623495290179
- Chidume, C., 10.1007/978-1-84882-190-3, Lecture Notes in Mathematics 1965, Springer, Berlin (2009). (2009) Zbl1167.47002MR2504478DOI10.1007/978-1-84882-190-3
- Cholamjiak, P., 10.1007/s11075-015-0030-6, Numer. Algorithms 71 (2016), 915-932. (2016) Zbl1342.47079MR3479747DOI10.1007/s11075-015-0030-6
- Cholamjiak, P., Cholamjiak, W., Suantai, S., 10.1186/s13660-015-0739-8, J. Inequal. Appl. 2015 (2015), Article ID 220, 10 pages. (2015) Zbl1338.47077MR3367213DOI10.1186/s13660-015-0739-8
- Cholamjiak, W., Cholamjiak, P., Suantai, S., 10.1007/s11784-018-0526-5, J. Fixed Point Theory Appl. 20 (2018), Article ID 42, 17 pages. (2018) Zbl06858734MR3764675DOI10.1007/s11784-018-0526-5
- Cioranescu, I., 10.1007/978-94-009-2121-4, Mathematics and Its Applications 62, Kluwer Academic Publishers, Dordrecht (1990). (1990) Zbl0712.47043MR1079061DOI10.1007/978-94-009-2121-4
- Combettes, P. L., Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal. 16 (2009), 727-748. (2009) Zbl1193.47067MR2583892
- Combettes, P. L., Wajs, V. R., 10.1137/050626090, Multiscale Model. Simul. 4 (2005), 1168-1200. (2005) Zbl1179.94031MR2203849DOI10.1137/050626090
- Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y., 10.1007/s11784-017-0472-7, J. Fixed Point Theory Appl. 19 (2017), 3097-3118. (2017) Zbl06817792MR3720497DOI10.1007/s11784-017-0472-7
- Dunn, J. C., 10.1016/0022-247X(76)90152-9, J. Math. Anal. Appl. 53 (1976), 145-158. (1976) Zbl0321.49025MR0388176DOI10.1016/0022-247X(76)90152-9
- Güler, O., 10.1137/0329022, SIAM J. Control Optim. 29 (1991), 403-419. (1991) Zbl0737.90047MR1092735DOI10.1137/0329022
- Halpern, B., 10.1090/S0002-9904-1967-11864-0, Bull. Am. Math. Soc. 73 (1967), 957-961. (1967) Zbl0177.19101MR0218938DOI10.1090/S0002-9904-1967-11864-0
- Haugazeau, Y., Sur la minimisation des formes quadratiques avec contraintes, C. R. Acad. Sci., Paris, Sér. A 264 (1967), 322-324 French. (1967) Zbl0149.36201MR0215113
- Kazarinoff, N. D., Analytic Inequalities, Holt, Rinehart and Winston, New York (1961). (1961) Zbl0097.03801MR0260957
- Lions, P.-L., Mercier, B., 10.1137/0716071, SIAM J. Numer. Anal. 16 (1979), 964-979. (1979) Zbl0426.65050MR0551319DOI10.1137/0716071
- López, G., Martín-Márquez, V., Wang, F., Xu, H.-K., 10.1155/2012/109236, Abstr. Appl. Anal. 2012 (2012), Article ID 109236, 25 pages. (2012) Zbl1252.47043MR2955015DOI10.1155/2012/109236
- Lorenz, D. A., Pock, T., 10.1007/s10851-014-0523-2, J. Math. Imaging Vis. 51 (2015), 311-325. (2015) Zbl1327.47063MR3314536DOI10.1007/s10851-014-0523-2
- Maingé, P.-E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), 469-479. (2007) Zbl1111.47058MR2273538DOI10.1016/j.jmaa.2005.12.066
- Martinet, B., Régularisation d'inéquations variationnelles par approximations successives, Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. (1970) Zbl0215.21103MR0298899
- Moudafi, A., Oliny, M., 10.1016/S0377-0427(02)00906-8, J. Comput. Appl. Math. 155 (2003), 447-454. (2003) Zbl1027.65077MR1984300DOI10.1016/S0377-0427(02)00906-8
- Passty, G. B., 10.1016/0022-247X(79)90234-8, J. Math. Anal. Appl. 72 (1979), 383-390. (1979) Zbl0428.47039MR0559375DOI10.1016/0022-247X(79)90234-8
- Pesquet, J.-C., Pustelnik, N., A parallel inertial proximal optimization method, Pac. J. Optim. 8 (2012), 273-306. (2012) Zbl1259.47080MR2954380
- Polyak, B. T., 10.1016/0041-5553(64)90137-5, U.S.S.R. Comput. Math. Math. Phys. 4 (1967), 1-17 translation from Zh. Vychisl. Mat. Mat. Fiz. 4 1964 791-803. (1967) Zbl0147.35301MR0169403DOI10.1016/0041-5553(64)90137-5
- Reich, S., 10.1016/0022-247X(80)90323-6, J. Math. Anal. Appl. 75 (1980), 287-292. (1980) Zbl0437.47047MR0576291DOI10.1016/0022-247X(80)90323-6
- Rockafellar, R. T., 10.1137/0314056, SIAM J. Control Optim. 14 (1976), 877-898. (1976) Zbl0358.90053MR0410483DOI10.1137/0314056
- Shehu, Y., 10.1155/2016/5973468, J. Funct. Spaces 2016 (2016), Article ID 5973468, 9 pages. (2016) Zbl1337.47096MR3459658DOI10.1155/2016/5973468
- Shehu, Y., Cai, G., 10.1007/s13398-016-0366-3, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. (2018) Zbl06836237MR3742991DOI10.1007/s13398-016-0366-3
- Suantai, S., Pholasa, N., Cholamjiak, P., 10.3934/jimo.2018023, J. Ind. Manag. Optim. 14 (2018), 1595-1615. (2018) MR3917875DOI10.3934/jimo.2018023
- Sunthrayuth, P., Cholamjiak, P., 10.1007/s11075-017-0411-0, Numer. Algorithms 78 (2018), 1019-1044. (2018) Zbl06916361MR3827320DOI10.1007/s11075-017-0411-0
- Tseng, P., 10.1137/S0363012998338806, SIAM J. Control Optim. 38 (2000), 431-446. (2000) Zbl0997.90062MR1741147DOI10.1137/S0363012998338806
- Wei, L., Agarwal, R. P., 10.1186/s13663-015-0495-y, Fixed Point Theory Appl. 2016 (2016), Article ID 7, 22 pages. (2016) Zbl1346.47071MR3441542DOI10.1186/s13663-015-0495-y
- Xu, H.-K., 10.1016/0362-546X(91)90200-K, Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623DOI10.1016/0362-546X(91)90200-K
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.