Approach of q -Derivative Operators to Terminating q -Series Formulae

Xiaoyuan Wang; Wenchang Chu

Communications in Mathematics (2018)

  • Volume: 26, Issue: 2, page 99-111
  • ISSN: 1804-1388

Abstract

top
The q -derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.

How to cite

top

Wang, Xiaoyuan, and Chu, Wenchang. "Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae." Communications in Mathematics 26.2 (2018): 99-111. <http://eudml.org/doc/294749>.

@article{Wang2018,
abstract = {The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.},
author = {Wang, Xiaoyuan, Chu, Wenchang},
journal = {Communications in Mathematics},
keywords = {Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper’s $q$-Karlsson-Minton formula},
language = {eng},
number = {2},
pages = {99-111},
publisher = {University of Ostrava},
title = {Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae},
url = {http://eudml.org/doc/294749},
volume = {26},
year = {2018},
}

TY - JOUR
AU - Wang, Xiaoyuan
AU - Chu, Wenchang
TI - Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae
JO - Communications in Mathematics
PY - 2018
PB - University of Ostrava
VL - 26
IS - 2
SP - 99
EP - 111
AB - The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
LA - eng
KW - Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper’s $q$-Karlsson-Minton formula
UR - http://eudml.org/doc/294749
ER -

References

top
  1. Al-Salam, W.A., Verma, A., 10.1137/0515032, SIAM J. Math., 15, 1984, 414-420, (1984) MR0731877DOI10.1137/0515032
  2. Andrews, G.E., 10.1137/0507026, SIAM J. Math., 7, 3, 1976, 332-336, (1976) MR0399529DOI10.1137/0507026
  3. Andrews, G.E., Connection coefficient problems and partitions, Proc. Sympos. Pure Math., 34, 1979, 1-24, (1979) MR0525316
  4. Andrews, G.E., 10.1016/0377-0427(95)00258-8, J. Comp. and Appl. Math., 68, 1--2, 1996, 15-23, (1996) MR1418748DOI10.1016/0377-0427(95)00258-8
  5. Bailey, W.N., Generalized Hypergeometric Series, 1935, Cambridge University Press, Cambridge, (1935) MR0185155
  6. Bailey, W.N., 10.1093/qmath/os-12.1.173, Quart. J. Math. (Oxford), 12, 1941, 173-175, (1941) MR0005964DOI10.1093/qmath/os-12.1.173
  7. Bailey, W.N., 10.1093/qmath/1.1.318, Quart. J. Math. (Oxford), 1, 1950, 318-320, (1950) MR0039852DOI10.1093/qmath/1.1.318
  8. Bressoud, D.M., Almost poised basic hypergeometric series, Proc. Indian Acad. Sci. Math. Sci., 97, 1-3, 1987, 61-66, (1987) MR0983605
  9. Carlitz, L., 10.1007/BF01300534, Monatsh. Math., 73, 1969, 193-198, (1969) MR0248035DOI10.1007/BF01300534
  10. Carlitz, L., Some q -expansion formulas, Glasnik Mat., 8, 28, 1973, 205-213, (1973) MR0330842
  11. Chu, W., Inversion techniques and combinatorial identities: Basic hypergeometric identities, Publ. Math. Debrecen, 44, 3-4, 1994, 301-320, (1994) MR1291979
  12. Chu, W., Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series, Compos. Math., 91, 2, 1994, 121-144, (1994) MR1273645
  13. Chu, W., 10.1063/1.530536, J. Math. Phys., 35, 4, 1994, 2036-2042, (1994) MR1267941DOI10.1063/1.530536
  14. Chu, W., Basic Almost-Poised Hypergeometric Series, 135, 642, 1998, x+99 pp, Mem. Amer. Math. Soc., (1998) MR1434989
  15. Chu, W., Partial-fraction expansions and well-poised bilateral series, Acta Sci. Mat., 64, 1998, 495-513, (1998) MR1666034
  16. Chu, W., q -Derivative operators and basic hypergeometric series, Results Math., 49, 1-2, 2006, 25-44, (2006) MR2264824
  17. Chu, W., Abel’s Method on summation by parts and Bilateral Well-Poised 3 ψ 3 -Series Identities, Difference Equations, Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München, Germany, July 2005), 2007, 752-761, World Scientific Publishers, (2007) MR2451214
  18. Chu, W., Divided differences and generalized Taylor series, Forum Math., 20, 6, 2008, 1097-1108, (2008) MR2479292
  19. Chu, W., 10.2298/AADM1000006C, Appl. Anal. Discrete Math., 4, 2010, 54-65, (2010) MR2654930DOI10.2298/AADM1000006C
  20. Chu, W., Elementary proofs for convolution identities of Abel and Hagen-Rothe, Electron. J. Combin., 17, 1, 2010, 24, (2010) MR2644861
  21. Chu, W., Wang, C., 10.1016/j.disc.2008.11.002, Discrete Math., 309, 12, 2009, 3888-3904, (2009) MR2537383DOI10.1016/j.disc.2008.11.002
  22. Gasper, G., 10.1137/0512020, SIAM J. Math. Anal., 12, 2, 1981, 196-200, (1981) MR0605430DOI10.1137/0512020
  23. Gasper, G., Rahman, M., Basic Hypergeometric Series, 2004, Cambridge University Press, 2nd Ed.. (2004) Zbl1129.33005MR2128719
  24. Gessel, I.M., Stanton, D., Applications of q -Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc., 277, 1983, 173-201, (1983) MR0690047
  25. Gould, H.W., 10.1080/00029890.1956.11988763, Amer. Math. Monthly, 63, 1, 1956, 84-91, (1956) MR0075170DOI10.1080/00029890.1956.11988763
  26. Jackson, F.H., 10.1093/qmath/os-12.1.167, Quart. J. Math., 12, 1941, 167-172, (1941) MR0005963DOI10.1093/qmath/os-12.1.167
  27. Karlsson, P.W., 10.1063/1.1665587, J. Math. Phys., 12, 2, 1971, 270-271, (1971) MR0276506DOI10.1063/1.1665587
  28. Liu, Z., 10.1023/A:1021306016666, Ramanujan J., 6, 4, 2002, 429-447, (2002) MR2125009DOI10.1023/A:1021306016666
  29. Minton, B.M., 10.1063/1.1665270, J. Math. Phys., 11, 4, 1970, 1375-1376, (1970) MR0262557DOI10.1063/1.1665270
  30. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/17.7. 
  31. Slater, I.J., Generalized Hypergeometric Functions, 1966, Cambridge University Press, Cambridge, (1966) MR0201688
  32. Verma, A., Jain, V.K., 10.1137/0516048, SIAM J. Math. Anal., 16, 3, 1985, 647-655, (1985) MR0783988DOI10.1137/0516048
  33. Verma, A., Joshi, C.M., Some remarks on summation of basic hypergeometric series, Houston J. Math., 5, 2, 1979, 277-294, (1979) MR0546763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.