Change point detection in vector autoregression

Zuzana Prášková

Kybernetika (2018)

  • Volume: 54, Issue: 6, page 1122-1137
  • ISSN: 0023-5954

Abstract

top
In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.

How to cite

top

Prášková, Zuzana. "Change point detection in vector autoregression." Kybernetika 54.6 (2018): 1122-1137. <http://eudml.org/doc/294752>.

@article{Prášková2018,
abstract = {In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.},
author = {Prášková, Zuzana},
journal = {Kybernetika},
keywords = {vector autoregression; change point; quasi-maximum likelihood},
language = {eng},
number = {6},
pages = {1122-1137},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Change point detection in vector autoregression},
url = {http://eudml.org/doc/294752},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Prášková, Zuzana
TI - Change point detection in vector autoregression
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1122
EP - 1137
AB - In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.
LA - eng
KW - vector autoregression; change point; quasi-maximum likelihood
UR - http://eudml.org/doc/294752
ER -

References

top
  1. Bai, J., Perron, P., 10.2307/2998540, Econometrica 66 (1998), 47-78. MR1616121DOI10.2307/2998540
  2. Berkes, I., Gombay, E., Horváth, L., Kokoszka, P., 10.1017/s0266466604206041, Econometr. Theory 20 (2004), 1140-1167. MR2101953DOI10.1017/s0266466604206041
  3. Mainassara, Y. Boubacar, Francq, C., 10.1016/j.jmva.2010.10.009, J. Multivariate Anal. 102 (2011), 496-505. MR2755011DOI10.1016/j.jmva.2010.10.009
  4. Carsoule, F., Franses, P. H., 10.1007/s001840200198 DOI10.1007/s001840200198
  5. Chu, C.-S. J., Stinchcombe, M., White, H., 10.2307/2171955 DOI10.2307/2171955
  6. Davidson, J., 10.1093/0198774036.001.0001, Oxford University Press, Oxford 1994. MR1430804DOI10.1093/0198774036.001.0001
  7. Dvořák, M., Stability in Autoregressive Time Series Models., Ph.D. Dissertation, Charles University, Prague 2015. 
  8. Gombay, E., Serban, D., 10.1016/j.jmva.2008.08.005 DOI10.1016/j.jmva.2008.08.005
  9. Hamilton, J. D., 10.1017/s0266466600009440, Princeton University Press, Princeton 1994. MR1278033DOI10.1017/s0266466600009440
  10. Horváth, L., Hušková, M., Kokoszka, P., Steinebach, J., 10.1016/j.jspi.2003.07.014 DOI10.1016/j.jspi.2003.07.014
  11. Hlávka, Z., Hušková, M., Kirch, C., Meintanis, S. G., 10.1007/s11749-011-0265-z, Test 21 (2012), 605-634. MR2992085DOI10.1007/s11749-011-0265-z
  12. Hušková, M., Koubková, A., Sequential procedures for detection of changes in autoregressive sequences. 
  13. Kuelbs, J., Philipp, W., 10.1214/aop/1176994565 DOI10.1214/aop/1176994565
  14. Li, F., Tian, Z., Qi, P., 10.1080/03610918.2013.800205, Comm. Statist. Simulation Comput. 44 (2015), 996-1009. MR3264916DOI10.1080/03610918.2013.800205
  15. Lee, S., Lee, Y., Na, O., 10.1080/03610920902947261 DOI10.1080/03610920902947261
  16. Lütkepohl, H., 10.1007/978-3-540-27752-1, Springer-Verlag, Berlin 2005. MR2172368DOI10.1007/978-3-540-27752-1
  17. Na, O., Lee, J., Lee, S., 10.1016/j.jkss.2010.03.006 DOI10.1016/j.jkss.2010.03.006
  18. Prášková, Z., 10.1007/978-3-319-13881-7_15, In: Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics and Statistics 122 (A. Steland, E. Rafajlowicz and K. Szajowski, eds.), Springer, Berlin 2015, pp. 129-137. MR3336417DOI10.1007/978-3-319-13881-7_15
  19. Straumann, D., 10.1007/b138400, Lecture Notes in Statistics 181, Springer, Berlin 2005. MR2142271DOI10.1007/b138400

NotesEmbed ?

top

You must be logged in to post comments.