Change point detection in vector autoregression
Kybernetika (2018)
- Volume: 54, Issue: 6, page 1122-1137
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPrášková, Zuzana. "Change point detection in vector autoregression." Kybernetika 54.6 (2018): 1122-1137. <http://eudml.org/doc/294752>.
@article{Prášková2018,
abstract = {In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.},
author = {Prášková, Zuzana},
journal = {Kybernetika},
keywords = {vector autoregression; change point; quasi-maximum likelihood},
language = {eng},
number = {6},
pages = {1122-1137},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Change point detection in vector autoregression},
url = {http://eudml.org/doc/294752},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Prášková, Zuzana
TI - Change point detection in vector autoregression
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1122
EP - 1137
AB - In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic distribution of the detector statistic is established under both the null hypothesis of no change as well as under the alternative that a change occurs.
LA - eng
KW - vector autoregression; change point; quasi-maximum likelihood
UR - http://eudml.org/doc/294752
ER -
References
top- Bai, J., Perron, P., 10.2307/2998540, Econometrica 66 (1998), 47-78. MR1616121DOI10.2307/2998540
- Berkes, I., Gombay, E., Horváth, L., Kokoszka, P., 10.1017/s0266466604206041, Econometr. Theory 20 (2004), 1140-1167. MR2101953DOI10.1017/s0266466604206041
- Mainassara, Y. Boubacar, Francq, C., 10.1016/j.jmva.2010.10.009, J. Multivariate Anal. 102 (2011), 496-505. MR2755011DOI10.1016/j.jmva.2010.10.009
- Carsoule, F., Franses, P. H., 10.1007/s001840200198 DOI10.1007/s001840200198
- Chu, C.-S. J., Stinchcombe, M., White, H., 10.2307/2171955 DOI10.2307/2171955
- Davidson, J., 10.1093/0198774036.001.0001, Oxford University Press, Oxford 1994. MR1430804DOI10.1093/0198774036.001.0001
- Dvořák, M., Stability in Autoregressive Time Series Models., Ph.D. Dissertation, Charles University, Prague 2015.
- Gombay, E., Serban, D., 10.1016/j.jmva.2008.08.005 DOI10.1016/j.jmva.2008.08.005
- Hamilton, J. D., 10.1017/s0266466600009440, Princeton University Press, Princeton 1994. MR1278033DOI10.1017/s0266466600009440
- Horváth, L., Hušková, M., Kokoszka, P., Steinebach, J., 10.1016/j.jspi.2003.07.014 DOI10.1016/j.jspi.2003.07.014
- Hlávka, Z., Hušková, M., Kirch, C., Meintanis, S. G., 10.1007/s11749-011-0265-z, Test 21 (2012), 605-634. MR2992085DOI10.1007/s11749-011-0265-z
- Hušková, M., Koubková, A., Sequential procedures for detection of changes in autoregressive sequences.
- Kuelbs, J., Philipp, W., 10.1214/aop/1176994565 DOI10.1214/aop/1176994565
- Li, F., Tian, Z., Qi, P., 10.1080/03610918.2013.800205, Comm. Statist. Simulation Comput. 44 (2015), 996-1009. MR3264916DOI10.1080/03610918.2013.800205
- Lee, S., Lee, Y., Na, O., 10.1080/03610920902947261 DOI10.1080/03610920902947261
- Lütkepohl, H., 10.1007/978-3-540-27752-1, Springer-Verlag, Berlin 2005. MR2172368DOI10.1007/978-3-540-27752-1
- Na, O., Lee, J., Lee, S., 10.1016/j.jkss.2010.03.006 DOI10.1016/j.jkss.2010.03.006
- Prášková, Z., 10.1007/978-3-319-13881-7_15, In: Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics and Statistics 122 (A. Steland, E. Rafajlowicz and K. Szajowski, eds.), Springer, Berlin 2015, pp. 129-137. MR3336417DOI10.1007/978-3-319-13881-7_15
- Straumann, D., 10.1007/b138400, Lecture Notes in Statistics 181, Springer, Berlin 2005. MR2142271DOI10.1007/b138400
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.