Gorenstein projective complexes with respect to cotorsion pairs

Renyu Zhao; Pengju Ma

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 117-129
  • ISSN: 0011-4642

Abstract

top
Let ( 𝒜 , ) be a complete and hereditary cotorsion pair in the category of left R -modules. In this paper, the so-called Gorenstein projective complexes with respect to the cotorsion pair ( 𝒜 , ) are introduced. We show that these complexes are just the complexes of Gorenstein projective modules with respect to the cotorsion pair ( 𝒜 , ) . As an application, we prove that both the Gorenstein projective modules with respect to cotorsion pairs and the Gorenstein projective complexes with respect to cotorsion pairs possess stability.

How to cite

top

Zhao, Renyu, and Ma, Pengju. "Gorenstein projective complexes with respect to cotorsion pairs." Czechoslovak Mathematical Journal 69.1 (2019): 117-129. <http://eudml.org/doc/294760>.

@article{Zhao2019,
abstract = {Let $(\mathcal \{A,B\})$ be a complete and hereditary cotorsion pair in the category of left $R$-modules. In this paper, the so-called Gorenstein projective complexes with respect to the cotorsion pair $(\mathcal \{A\}, \mathcal \{B\})$ are introduced. We show that these complexes are just the complexes of Gorenstein projective modules with respect to the cotorsion pair $(\mathcal \{A\}, \mathcal \{B\})$. As an application, we prove that both the Gorenstein projective modules with respect to cotorsion pairs and the Gorenstein projective complexes with respect to cotorsion pairs possess stability.},
author = {Zhao, Renyu, Ma, Pengju},
journal = {Czechoslovak Mathematical Journal},
keywords = {cotorsion pair; Gorenstein projective complex with respect to cotorsion pairs; stability of Gorenstein categories},
language = {eng},
number = {1},
pages = {117-129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Gorenstein projective complexes with respect to cotorsion pairs},
url = {http://eudml.org/doc/294760},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Zhao, Renyu
AU - Ma, Pengju
TI - Gorenstein projective complexes with respect to cotorsion pairs
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 117
EP - 129
AB - Let $(\mathcal {A,B})$ be a complete and hereditary cotorsion pair in the category of left $R$-modules. In this paper, the so-called Gorenstein projective complexes with respect to the cotorsion pair $(\mathcal {A}, \mathcal {B})$ are introduced. We show that these complexes are just the complexes of Gorenstein projective modules with respect to the cotorsion pair $(\mathcal {A}, \mathcal {B})$. As an application, we prove that both the Gorenstein projective modules with respect to cotorsion pairs and the Gorenstein projective complexes with respect to cotorsion pairs possess stability.
LA - eng
KW - cotorsion pair; Gorenstein projective complex with respect to cotorsion pairs; stability of Gorenstein categories
UR - http://eudml.org/doc/294760
ER -

References

top
  1. Bouchiba, S., 10.1142/S100538671300059X, Algebra Colloq. 20 (2013), 623-636. (2013) Zbl1281.16010MR3116791DOI10.1142/S100538671300059X
  2. Bouchiba, S., Khaloui, M., 10.1017/S0017089511000516, Glasg. Math. J. 54 (2012), 169-175. (2012) Zbl1235.16009MR2862395DOI10.1017/S0017089511000516
  3. Bravo, D., Gillespie, J., 10.1080/00927872.2015.1044100, Commun. Algebra 44 (2016), 2213-2233. (2016) Zbl1346.18021MR3490674DOI10.1080/00927872.2015.1044100
  4. Enochs, E. E., Rozas, J. R. García, 10.1080/00927879808826229, Commun. Algebra 26 (1998), 1657-1674. (1998) Zbl0908.18007MR1622438DOI10.1080/00927879808826229
  5. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  6. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  7. Rozas, J. R. García, Covers and Envelopes in the Category of Complexes of Modules, Chapman & Hall/CRC Research Notes in Mathematics 407, Chapman & Hall/CRC, Boca Raton (1999). (1999) Zbl0922.16001MR1693036
  8. Gillespie, J., 10.1090/S0002-9947-04-03416-6, Trans. Am. Math. Soc. 356 (2004), 3369-3390. (2004) Zbl1056.55011MR2052954DOI10.1090/S0002-9947-04-03416-6
  9. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  10. Hu, J. S., Xu, A. M., 10.1142/S1005386716000286, Algebra Colloq. 23 (2016), 251-262. (2016) Zbl1346.16006MR3475049DOI10.1142/S1005386716000286
  11. Liang, L., Ding, N. Q., Yang, G., 10.1007/s10114-014-3227-z, Acta Math. Sin., Engl. Ser. 30 (2014), 2063-2078. (2014) Zbl1304.18032MR3285935DOI10.1007/s10114-014-3227-z
  12. Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
  13. Xu, A. M., Ding, N. Q., 10.1080/00927872.2012.677892, Commun. Algebra 42 (2013), 3793-3804. (2013) Zbl1284.16006MR3169490DOI10.1080/00927872.2012.677892
  14. Yang, G., Liu, Z. K., 10.1017/S0013091510000489, Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 783-797. (2011) Zbl1238.13023MR2837480DOI10.1017/S0013091510000489
  15. Yang, G., K.Liu, Z., 10.1017/S0017089511000528, Glasg. Math. J. 54 (2012), 177-191. (2012) Zbl1248.16007MR2862396DOI10.1017/S0017089511000528
  16. Yang, X. Y., Chen, W. J., 10.1080/00927872.2016.1233226, Commun. Algebra 45 (2017), 2875-2888. (2017) Zbl1372.18015MR3594565DOI10.1080/00927872.2016.1233226
  17. Yang, X. Y., Ding, N. Q., 10.1515/forum-2013-6014, Forum Math. 27 (2015), 3205-3231. (2015) Zbl1347.18003MR3420339DOI10.1515/forum-2013-6014
  18. Yang, X. Y., Liu, Z. K., 10.1080/00927871003741497, Commun. Algebra 39 (2011), 1705-1721. (2011) Zbl1238.16002MR2821502DOI10.1080/00927871003741497

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.