A penalty approach for a box constrained variational inequality problem

Zahira Kebaili; Djamel Benterki

Applications of Mathematics (2018)

  • Volume: 63, Issue: 4, page 439-454
  • ISSN: 0862-7940

Abstract

top
We propose a penalty approach for a box constrained variational inequality problem ( BVIP ) . This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of BVIP when the function F involved is continuous and strongly monotone and the box C contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results tested on some examples are satisfactory and confirm the theoretical approach.

How to cite

top

Kebaili, Zahira, and Benterki, Djamel. "A penalty approach for a box constrained variational inequality problem." Applications of Mathematics 63.4 (2018): 439-454. <http://eudml.org/doc/294762>.

@article{Kebaili2018,
abstract = {We propose a penalty approach for a box constrained variational inequality problem $(\rm BVIP)$. This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of $\rm BVIP$ when the function $F$ involved is continuous and strongly monotone and the box $C$ contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results tested on some examples are satisfactory and confirm the theoretical approach.},
author = {Kebaili, Zahira, Benterki, Djamel},
journal = {Applications of Mathematics},
keywords = {box constrained variational inequality problem; power penalty approach; strongly monotone operator},
language = {eng},
number = {4},
pages = {439-454},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A penalty approach for a box constrained variational inequality problem},
url = {http://eudml.org/doc/294762},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Kebaili, Zahira
AU - Benterki, Djamel
TI - A penalty approach for a box constrained variational inequality problem
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 439
EP - 454
AB - We propose a penalty approach for a box constrained variational inequality problem $(\rm BVIP)$. This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of $\rm BVIP$ when the function $F$ involved is continuous and strongly monotone and the box $C$ contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results tested on some examples are satisfactory and confirm the theoretical approach.
LA - eng
KW - box constrained variational inequality problem; power penalty approach; strongly monotone operator
UR - http://eudml.org/doc/294762
ER -

References

top
  1. Auslender, A., Optimisation. Méthodes numériques, Maitrise de mathématiques et applications fondamentales. Masson, Paris French (1976). (1976) Zbl0326.90057MR0441204
  2. Censor, Y., Iusem, A. N., Zenios, S. A., 10.1007/BF01580089, Math. Program. 81 (1998), 373-400. (1998) Zbl0919.90123MR1617732DOI10.1007/BF01580089
  3. Facchinei, F., Pang, J.-S., 10.1007/b97543, Springer Series in Operations Research Springer, New York (2003). (2003) Zbl1062.90001MR1955648DOI10.1007/b97543
  4. Facchinei, F., Pang, J.-S., 10.1007/b97544, Springer Series in Operations Research Springer, New York (2003). (2003) Zbl1062.90002MR1955649DOI10.1007/b97544
  5. Fukushima, M., 10.1007/BF01585696, Math. Program., Ser. A 53 (1992), 99-110. (1992) Zbl0756.90081MR1151767DOI10.1007/BF01585696
  6. Hao, Z., Wan, Z., Chi, X., Chen, J., 10.1016/j.cam.2015.05.007, J. Comput. Appl. Math. 290 (2015), 136-149. (2015) Zbl1327.90207MR3370398DOI10.1016/j.cam.2015.05.007
  7. Harker, P. T., Pang, J.-S., 10.1007/BF01582255, Math. Program., Ser. B 48 (1990), 161-220. (1990) Zbl0734.90098MR1073707DOI10.1007/BF01582255
  8. Huang, C., Wang, S., 10.1016/j.orl.2009.09.009, Oper. Res. Lett. 38 (2010), 72-76. (2010) Zbl1182.90090MR2565819DOI10.1016/j.orl.2009.09.009
  9. Huang, C., Wang, S., 10.1016/j.na.2011.08.061, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 588-597. (2012) Zbl1233.65040MR2847442DOI10.1016/j.na.2011.08.061
  10. Kanzow, C., Fukushima, M., 10.1007/BF02680550, Math. Program. 83 (1998), 55-87. (1998) Zbl0920.90134MR1643959DOI10.1007/BF02680550
  11. Ma, C., Kang, T., 10.1016/j.amc.2004.03.018, Appl. Math. Comput. 162 (2005), 1397-1429. (2005) Zbl1068.65089MR2113979DOI10.1016/j.amc.2004.03.018
  12. Noor, M. A., Wang, Y., Xiu, N., 10.1016/S0096-3003(02)00148-0, Appl. Math. Comput. 137 (2003), 423-435. (2003) Zbl1031.65078MR1950108DOI10.1016/S0096-3003(02)00148-0
  13. Sun, D.-F., A projection and contraction method for the nonlinear complementarity problem and its extensions, Chin. J. Numer. Math. Appl. 16 (1994), 73-84 English. Chinese original translation from Math. Numer. Sin. 16 1994 183-194. (1994) Zbl0900.65188MR1459564
  14. Tang, J., Liu, S., 10.1016/j.nonrwa.2009.10.002, Nonlinear Anal., Real World Appl. 11 (2010), 2770-2786. (2010) Zbl1208.90172MR2661943DOI10.1016/j.nonrwa.2009.10.002
  15. Ulji, Chen, G.-Q., 10.1007/BF02466422, Appl. Math. Mech., Engl. Ed. 26 (2005), 1083-1092 Appl. Math. Mech. 26 2005 988-996 Chinese. English, Chinese summary. (2005) Zbl1144.65309MR2169264DOI10.1007/BF02466422
  16. Wang, S., Yang, X., 10.1016/j.orl.2007.06.006, Oper. Res. Lett. 36 (2008), 211-214. (2008) Zbl1163.90762MR2396598DOI10.1016/j.orl.2007.06.006
  17. Wang, Y., Zhu, D., 10.1007/s11401-007-0082-6, Chin. Ann. Math., Ser. B 29 (2008), 273-290. (2008) Zbl1151.49025MR2421761DOI10.1007/s11401-007-0082-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.