More on betweenness-uniform graphs
Jana Coroničová Hurajová; Tomáš Madaras
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 293-306
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCoroničová Hurajová, Jana, and Madaras, Tomáš. "More on betweenness-uniform graphs." Czechoslovak Mathematical Journal 68.2 (2018): 293-306. <http://eudml.org/doc/294763>.
@article{CoroničováHurajová2018,
abstract = {We study graphs whose vertices possess the same value of betweenness centrality (which is defined as the sum of relative numbers of shortest paths passing through a given vertex). Extending previously known results of S. Gago, J. Hurajová, T. Madaras (2013), we show that, apart of cycles, such graphs cannot contain 2-valent vertices and, moreover, are 3-connected if their diameter is 2. In addition, we prove that the betweenness uniformity is satisfied in a wide graph family of semi-symmetric graphs, which enables us to construct a variety of nontrivial cubic betweenness-uniform graphs.},
author = {Coroničová Hurajová, Jana, Madaras, Tomáš},
journal = {Czechoslovak Mathematical Journal},
keywords = {betweenness centrality; betweenness-uniform graph},
language = {eng},
number = {2},
pages = {293-306},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {More on betweenness-uniform graphs},
url = {http://eudml.org/doc/294763},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Coroničová Hurajová, Jana
AU - Madaras, Tomáš
TI - More on betweenness-uniform graphs
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 293
EP - 306
AB - We study graphs whose vertices possess the same value of betweenness centrality (which is defined as the sum of relative numbers of shortest paths passing through a given vertex). Extending previously known results of S. Gago, J. Hurajová, T. Madaras (2013), we show that, apart of cycles, such graphs cannot contain 2-valent vertices and, moreover, are 3-connected if their diameter is 2. In addition, we prove that the betweenness uniformity is satisfied in a wide graph family of semi-symmetric graphs, which enables us to construct a variety of nontrivial cubic betweenness-uniform graphs.
LA - eng
KW - betweenness centrality; betweenness-uniform graph
UR - http://eudml.org/doc/294763
ER -
References
top- Akiyama, J., Ando, K., Avis, D., 10.1016/S0304-0208(08)72802-0, Convexity and Graph Theory Proc. Conf., Jerusalem, 1981, Ann. Discrete Math. 20; North-Holland Mathematics Studies 87, North-Holland, Amsterdam (1984), 13-23. (1984) Zbl0566.05053MR0791008DOI10.1016/S0304-0208(08)72802-0
- Balakrishnan, K., Changat, M., Peterin, I., Špacapan, S., Šparl, P., Subhamathi, A. R., 10.1016/j.ejc.2008.09.018, Eur. J. Comb. 30 (2009), 1048-1053. (2009) Zbl1185.05052MR2513907DOI10.1016/j.ejc.2008.09.018
- Buckley, F., Self-centered graphs with a given radius, Proc. 10th southeast. Conf. Combinatorics, Graph Theory and Computing, Boca Raton, 1979 Congr. Numerantium 23 (1979), 211-215. (1979) Zbl0426.05034MR0561047
- Buckley, F., 10.1111/j.1749-6632.1989.tb16384.x, Proc. Conf., Jinan, 1986 Ann. N. Y. Acad. Sci. 576, New York Academy of Sciences, New York (1989), 71-78. (1989) Zbl0792.05050MR1110802DOI10.1111/j.1749-6632.1989.tb16384.x
- Caporossi, G., Paiva, M., Vukičević, D., Segatto, M., Centrality and betweenness: vertex and edge decomposition of the Wiener index, MATCH Commun. Math. Comput. Chem. 68 (2012), 293-302. (2012) Zbl1289.05057MR2986488
- Comellas, F., Gago, S., 10.1016/j.laa.2006.08.027, Linear Algebra Appl. 423 (2007), 74-80. (2007) Zbl1114.05058MR2312324DOI10.1016/j.laa.2006.08.027
- Diestel, R., 10.1007/978-3-662-53622-3, Graduate Texts in Mathematics 173, Springer, Berlin (2010). (2010) Zbl1204.05001MR2744811DOI10.1007/978-3-662-53622-3
- Freeman, L. C., 10.2307/3033543, Sociometry 40 (1977), 35-41. (1977) DOI10.2307/3033543
- Gago, S., Hurajová, J. Coroničová, Madaras, T., 10.1007/s10587-013-0044-y, Czech. Math. J. 63 (2013), 629-642. (2013) Zbl1299.05085MR3125646DOI10.1007/s10587-013-0044-y
- Knor, M., Madaras, T., On farness- and reciprocally-selfcentric antisymmetric graphs, Congr. Numerantium 171 (2004), 173-178. (2004) Zbl1064.05052MR2122106
- Malnič, A., Marušič, D., Potočnik, P., Wang, C., 10.1016/j.disc.2003.07.004, Discrete Math. 280 (2004), 133-148. (2004) Zbl1041.05039MR2043804DOI10.1016/j.disc.2003.07.004
- Plesník, J., 10.1002/jgt.3190080102, J. Graph Theory 8 (1984), 1-21. (1984) Zbl0552.05048MR0732013DOI10.1002/jgt.3190080102
- Weisstein, E. W., Generalized Petersen Graph, From MathWorld---A Wolfram Web Resource available at http://mathworld.wolfram.com/GeneralizedPetersenGraph.html.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.