On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices

Zhipeng Zhang; Zengqiang Chen; Xiaoguang Han; Zhongxin Liu

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 41-60
  • ISSN: 0023-5954

Abstract

top
In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated within the framework of STP, including single-equilibrium-based SOFS, multi-equilibrium-based SOFS, and further limit cycle-based SOFS. Then the necessary and sufficient conditions for the existence of the three types SOFS are proposed respectively. Meanwhile the efficient and systematic procedures based on the matrix theory to seek the corresponding SOF controller are provided for the three types SOFS problem. Finally, two examples are presented to illustrate the effectiveness of the proposed approach.

How to cite

top

Zhang, Zhipeng, et al. "On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices." Kybernetika 54.1 (2018): 41-60. <http://eudml.org/doc/294768>.

@article{Zhang2018,
abstract = {In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated within the framework of STP, including single-equilibrium-based SOFS, multi-equilibrium-based SOFS, and further limit cycle-based SOFS. Then the necessary and sufficient conditions for the existence of the three types SOFS are proposed respectively. Meanwhile the efficient and systematic procedures based on the matrix theory to seek the corresponding SOF controller are provided for the three types SOFS problem. Finally, two examples are presented to illustrate the effectiveness of the proposed approach.},
author = {Zhang, Zhipeng, Chen, Zengqiang, Han, Xiaoguang, Liu, Zhongxin},
journal = {Kybernetika},
keywords = {discrete event dynamic systems; finite automata; static output feedback stabilization; semi-tensor product; output feedback feasible events},
language = {eng},
number = {1},
pages = {41-60},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices},
url = {http://eudml.org/doc/294768},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Zhang, Zhipeng
AU - Chen, Zengqiang
AU - Han, Xiaoguang
AU - Liu, Zhongxin
TI - On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 41
EP - 60
AB - In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated within the framework of STP, including single-equilibrium-based SOFS, multi-equilibrium-based SOFS, and further limit cycle-based SOFS. Then the necessary and sufficient conditions for the existence of the three types SOFS are proposed respectively. Meanwhile the efficient and systematic procedures based on the matrix theory to seek the corresponding SOF controller are provided for the three types SOFS problem. Finally, two examples are presented to illustrate the effectiveness of the proposed approach.
LA - eng
KW - discrete event dynamic systems; finite automata; static output feedback stabilization; semi-tensor product; output feedback feasible events
UR - http://eudml.org/doc/294768
ER -

References

top
  1. Bof, N., Fornasini, E., Valcher, M., 10.1016/j.automatica.2015.03.032, Automatica 57 (2015), 21-28. MR3350669DOI10.1016/j.automatica.2015.03.032
  2. Cassandras, C., Lafortune, S., 10.1007/978-0-387-68612-7, Springer Science and Business Media, New York 2008. MR2364236DOI10.1007/978-0-387-68612-7
  3. Cheng, D., 10.1109/tac.2010.2050161, IEEE Trans. Automat. Control 56 (2011), 2-10. MR2777196DOI10.1109/tac.2010.2050161
  4. Cheng, D., He, F., Qi, H., Xu, T., 10.1109/tac.2015.2404471, IEEE Trans. Automat. Control 60 (2015), 2402-2415. MR3393130DOI10.1109/tac.2015.2404471
  5. Cheng, D., Qi, H., 10.1016/j.automatica.2009.03.006, Automatica 45 (2009), 1659-1667. DOI10.1016/j.automatica.2009.03.006
  6. Cheng, D., Qi, H., 10.1109/tac.2010.2043294, IEEE Trans. Automat. Control 55 (2010), 2251-2258. MR2742217DOI10.1109/tac.2010.2043294
  7. Daniel, R., Markus, L., 10.14736/kyb-2014-1-0066, Kybernetika 50 (2014), 66-94. DOI10.14736/kyb-2014-1-0066
  8. Fornasini, E., Valcher, M. E, 10.1016/j.automatica.2013.02.027, Automatica 49 (2013), 1506-1509. MR3044035DOI10.1016/j.automatica.2013.02.027
  9. Holub, J., The finite automata approaches in stringology., Kybernetika 48 (2012), 386-401. 
  10. Han, X., Chen, Z., Liu, Z., al., et, 10.1109/tsmc.2015.2507162, IEEE Trans. Systems, Man Cybernet.: Systems 47 (2017), 531-536. DOI10.1109/tsmc.2015.2507162
  11. Han, X., Chen, Z, Liu, Z., al., et, 10.1080/00207179.2017.1295319, Int. Control 91 (2017), 4, 874-886. MR3772324DOI10.1080/00207179.2017.1295319
  12. Kobetski, A., Fabian, M, 10.1007/s10626-009-0064-9, Discrete Event Dynamic Systems 19 (2009), 287-315. MR2519802DOI10.1007/s10626-009-0064-9
  13. Li, H., Wang, Y., 10.1016/j.automatica.2013.09.023, Automatica 49 (2013), 3641-3645. DOI10.1016/j.automatica.2013.09.023
  14. Li, Z., Qiao, Y., Qi, H., Cheng, D., 10.1007/s11424-008-9119-5, J. Systems Science Complexity 21 (2008), 362-377. DOI10.1007/s11424-008-9119-5
  15. Ozveren, C., Willsky, A., 10.1109/9.133186, IEEE Trans. Automat. Control 19 (1991), 925-935. MR1116449DOI10.1109/9.133186
  16. Passino, K., Michel, A., Antsaklis, P., 10.1109/9.272323, IEEE Trans. Automat. Control 39 (1994), 269-279. MR1265411DOI10.1109/9.272323
  17. Syrmos, V., Abdallah, C., Dorato, P., al., et, 10.1016/s0005-1098(96)00141-0, Automatica 33 (1997), 125-137. MR1436056DOI10.1016/s0005-1098(96)00141-0
  18. Tiwari, S. P., Srivastava, A. K., 10.1016/j.fss.2004.06.014, Fuzzy Sets Systems 151 (2005), 503-511. DOI10.1016/j.fss.2004.06.014
  19. Xu, X., Hong, Y., 10.1007/s11768-012-1178-4, J. Control Theory Appl. 10 (2012), 210-215. MR2915184DOI10.1007/s11768-012-1178-4
  20. Xu, X., Zhang, Y., Hong, Y., 10.1109/acc.2013.6580331, In: Proc. American Control Conference, Washington 2013, pp. 3242-3247. DOI10.1109/acc.2013.6580331
  21. Yan, Y., Chen, Z., Liu, Z., 10.1007/s11768-014-0137-7, Control Theory Technol. 12 (2014), 173-186. DOI10.1007/s11768-014-0137-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.