The graded differential geometry of mixed symmetry tensors

Andrew James Bruce; Eduardo Ibarguengoytia

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 2, page 123-137
  • ISSN: 0044-8753

Abstract

top
We show how the theory of 2 n -manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.

How to cite

top

Bruce, Andrew James, and Ibarguengoytia, Eduardo. "The graded differential geometry of mixed symmetry tensors." Archivum Mathematicum 055.2 (2019): 123-137. <http://eudml.org/doc/294773>.

@article{Bruce2019,
abstract = {We show how the theory of $\mathbb \{Z\}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.},
author = {Bruce, Andrew James, Ibarguengoytia, Eduardo},
journal = {Archivum Mathematicum},
keywords = {$\mathbb \{Z\}_2^n$-manifolds; mixed symmetry tensors; dual gravitons},
language = {eng},
number = {2},
pages = {123-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The graded differential geometry of mixed symmetry tensors},
url = {http://eudml.org/doc/294773},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Bruce, Andrew James
AU - Ibarguengoytia, Eduardo
TI - The graded differential geometry of mixed symmetry tensors
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 123
EP - 137
AB - We show how the theory of $\mathbb {Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
LA - eng
KW - $\mathbb {Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
UR - http://eudml.org/doc/294773
ER -

References

top
  1. Bekaert, X., Boulanger, N., 10.1007/s00220-003-0995-1, Comm. Math. Phys. 245 (1) (2004), 27–67. (2004) MR2036367DOI10.1007/s00220-003-0995-1
  2. Bekaert, X., Boulanger, N., Henneaux, M., 10.1103/PhysRevD.67.044010, Phys. Rev. D 67 (4) (2003), 044010. (2003) MR1975985DOI10.1103/PhysRevD.67.044010
  3. Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F., Dual double field theory, J. High Energy Phys. 26 (6) (2016), 39 pp. (2016) MR3538187
  4. Campoleoni, A., Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cimento (3) 33 (2010), 123–253. (2010) 
  5. Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M., 10.1103/PhysRevD.89.066004, Phys. Rev. D 89 (2014), 066004. (2014) DOI10.1103/PhysRevD.89.066004
  6. Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P., 10.1007/JHEP03(2017)070, J. High Energy Phys. (3) (2017), 070. (2017) MR3657627DOI10.1007/JHEP03(2017)070
  7. Covolo, T., Grabowski, J., Poncin, N., 10.1016/j.geomphys.2016.09.006, J. Geom. Phys. 110 (2016), 393–401. (2016) MR3566123DOI10.1016/j.geomphys.2016.09.006
  8. Covolo, T., Grabowski, J., Poncin, N., 10.1063/1.4955416, J. Math. Phys. 57 (7) (2016), 16 pp., 073503. (2016) MR3522262DOI10.1063/1.4955416
  9. Covolo, T., Kwok, S., Poncin, N., Differential calculus on 2 n -supermanifolds, arXiv:1608.00949 [math.DG]. 
  10. Curtright, T., 10.1016/0370-2693(85)91235-3, Phys. Lett. B 165 (1985), 304–308. (1985) DOI10.1016/0370-2693(85)91235-3
  11. de Medeiros, P.F., Hull, C.M., 10.1007/s00220-003-0810-z, Comm. Math. Phys. 235 (2003), 255–273. (2003) MR1969728DOI10.1007/s00220-003-0810-z
  12. Dubois-Violette, M., Henneaux, M., 10.1007/s002200200610, Comm. Math. Phys. 226 (2) (2002), 393–418. (2002) MR1892459DOI10.1007/s002200200610
  13. Hallowell, K., Waldron, A., 10.1007/s00220-007-0393-1, Comm. Math. Phys. 278 (3) (2008), 775–801. (2008) MR2373443DOI10.1007/s00220-007-0393-1
  14. Hull, C.M., Strongly coupled gravity and duality, Nuclear Phys. B 583 (1–2) (2000), 237–259. (2000) MR1776849
  15. Hull, C.M., 10.1088/1126-6708/2001/09/027, J. High Energy Phys. (9) (2001), 25 pp., Paper 27. (2001) MR1867173DOI10.1088/1126-6708/2001/09/027
  16. Khoo, F.S., Generalized Geometry Approaches to Gravity, Ph.D. thesis, Jacobs University, Bremen, Germany, 2016. (2016) 
  17. Lawson, H.B., Michelsohn, M-L., Spin geometry, Princeton Math. Ser. 38 (1989), xii+427 pp. (1989) MR1031992
  18. Molotkov, V., 10.1142/S140292511000088X, J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. (2010) MR2827484DOI10.1142/S140292511000088X
  19. Poncin, N., Towards integration on colored supermanifolds, Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. (2016) MR3642399
  20. Pradines, J., Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. (1974) Zbl0285.58002MR0388432
  21. Vaintrob, A., 10.1016/0393-0440(95)00003-8, J. Geom. Phys. 18 (1) (1996), 59–75. (1996) MR1370829DOI10.1016/0393-0440(95)00003-8
  22. Voronov, Th., Geometric integration theory on supermanifolds, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. (1991) MR1202882
  23. Voronov, Th., 10.1007/s00220-012-1568-y, Comm. Math. Phys. 315 (2012), 279–310. (2012) Zbl1261.53080MR2971727DOI10.1007/s00220-012-1568-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.