The graded differential geometry of mixed symmetry tensors
Andrew James Bruce; Eduardo Ibarguengoytia
Archivum Mathematicum (2019)
- Volume: 055, Issue: 2, page 123-137
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBruce, Andrew James, and Ibarguengoytia, Eduardo. "The graded differential geometry of mixed symmetry tensors." Archivum Mathematicum 055.2 (2019): 123-137. <http://eudml.org/doc/294773>.
@article{Bruce2019,
abstract = {We show how the theory of $\mathbb \{Z\}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.},
author = {Bruce, Andrew James, Ibarguengoytia, Eduardo},
journal = {Archivum Mathematicum},
keywords = {$\mathbb \{Z\}_2^n$-manifolds; mixed symmetry tensors; dual gravitons},
language = {eng},
number = {2},
pages = {123-137},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The graded differential geometry of mixed symmetry tensors},
url = {http://eudml.org/doc/294773},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Bruce, Andrew James
AU - Ibarguengoytia, Eduardo
TI - The graded differential geometry of mixed symmetry tensors
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 123
EP - 137
AB - We show how the theory of $\mathbb {Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
LA - eng
KW - $\mathbb {Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
UR - http://eudml.org/doc/294773
ER -
References
top- Bekaert, X., Boulanger, N., 10.1007/s00220-003-0995-1, Comm. Math. Phys. 245 (1) (2004), 27–67. (2004) MR2036367DOI10.1007/s00220-003-0995-1
- Bekaert, X., Boulanger, N., Henneaux, M., 10.1103/PhysRevD.67.044010, Phys. Rev. D 67 (4) (2003), 044010. (2003) MR1975985DOI10.1103/PhysRevD.67.044010
- Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F., Dual double field theory, J. High Energy Phys. 26 (6) (2016), 39 pp. (2016) MR3538187
- Campoleoni, A., Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cimento (3) 33 (2010), 123–253. (2010)
- Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M., 10.1103/PhysRevD.89.066004, Phys. Rev. D 89 (2014), 066004. (2014) DOI10.1103/PhysRevD.89.066004
- Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P., 10.1007/JHEP03(2017)070, J. High Energy Phys. (3) (2017), 070. (2017) MR3657627DOI10.1007/JHEP03(2017)070
- Covolo, T., Grabowski, J., Poncin, N., 10.1016/j.geomphys.2016.09.006, J. Geom. Phys. 110 (2016), 393–401. (2016) MR3566123DOI10.1016/j.geomphys.2016.09.006
- Covolo, T., Grabowski, J., Poncin, N., 10.1063/1.4955416, J. Math. Phys. 57 (7) (2016), 16 pp., 073503. (2016) MR3522262DOI10.1063/1.4955416
- Covolo, T., Kwok, S., Poncin, N., Differential calculus on -supermanifolds, arXiv:1608.00949 [math.DG].
- Curtright, T., 10.1016/0370-2693(85)91235-3, Phys. Lett. B 165 (1985), 304–308. (1985) DOI10.1016/0370-2693(85)91235-3
- de Medeiros, P.F., Hull, C.M., 10.1007/s00220-003-0810-z, Comm. Math. Phys. 235 (2003), 255–273. (2003) MR1969728DOI10.1007/s00220-003-0810-z
- Dubois-Violette, M., Henneaux, M., 10.1007/s002200200610, Comm. Math. Phys. 226 (2) (2002), 393–418. (2002) MR1892459DOI10.1007/s002200200610
- Hallowell, K., Waldron, A., 10.1007/s00220-007-0393-1, Comm. Math. Phys. 278 (3) (2008), 775–801. (2008) MR2373443DOI10.1007/s00220-007-0393-1
- Hull, C.M., Strongly coupled gravity and duality, Nuclear Phys. B 583 (1–2) (2000), 237–259. (2000) MR1776849
- Hull, C.M., 10.1088/1126-6708/2001/09/027, J. High Energy Phys. (9) (2001), 25 pp., Paper 27. (2001) MR1867173DOI10.1088/1126-6708/2001/09/027
- Khoo, F.S., Generalized Geometry Approaches to Gravity, Ph.D. thesis, Jacobs University, Bremen, Germany, 2016. (2016)
- Lawson, H.B., Michelsohn, M-L., Spin geometry, Princeton Math. Ser. 38 (1989), xii+427 pp. (1989) MR1031992
- Molotkov, V., 10.1142/S140292511000088X, J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. (2010) MR2827484DOI10.1142/S140292511000088X
- Poncin, N., Towards integration on colored supermanifolds, Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. (2016) MR3642399
- Pradines, J., Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. (1974) Zbl0285.58002MR0388432
- Vaintrob, A., 10.1016/0393-0440(95)00003-8, J. Geom. Phys. 18 (1) (1996), 59–75. (1996) MR1370829DOI10.1016/0393-0440(95)00003-8
- Voronov, Th., Geometric integration theory on supermanifolds, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. (1991) MR1202882
- Voronov, Th., 10.1007/s00220-012-1568-y, Comm. Math. Phys. 315 (2012), 279–310. (2012) Zbl1261.53080MR2971727DOI10.1007/s00220-012-1568-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.