On the mappings and in intermediate rings of
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 3, page 383-390
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topParsinia, Mehdi. "On the mappings ${\mathcal {Z}}_A$ and $\Im _A$ in intermediate rings of $C(X)$." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 383-390. <http://eudml.org/doc/294777>.
@article{Parsinia2018,
abstract = {In this article, we investigate new topological descriptions for two well-known mappings $\{\mathcal \{Z\}\}_A$ and $\Im _A$ defined on intermediate rings $A(X)$ of $C(X)$. Using this, coincidence of each two classes of $z$-ideals, $\{\mathcal \{Z\}\}_A$-ideals and $\Im _A$-ideals of $A(X)$ is studied. Moreover, we answer five questions concerning the mapping $\Im _A$ raised in [J. Sack, S. Watson, $C$ and $C^*$ among intermediate rings, Topology Proc. 43 (2014), 69–82].},
author = {Parsinia, Mehdi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$z$-ideal; $\{\mathcal \{Z\}\}_A$-ideal; $\Im _A$-ideal; $z$-filter; $\{\mathcal \{Z\}\}_A$-filter; $\Im _A$-filter; intermediate ring},
language = {eng},
number = {3},
pages = {383-390},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the mappings $\{\mathcal \{Z\}\}_A$ and $\Im _A$ in intermediate rings of $C(X)$},
url = {http://eudml.org/doc/294777},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Parsinia, Mehdi
TI - On the mappings ${\mathcal {Z}}_A$ and $\Im _A$ in intermediate rings of $C(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 383
EP - 390
AB - In this article, we investigate new topological descriptions for two well-known mappings ${\mathcal {Z}}_A$ and $\Im _A$ defined on intermediate rings $A(X)$ of $C(X)$. Using this, coincidence of each two classes of $z$-ideals, ${\mathcal {Z}}_A$-ideals and $\Im _A$-ideals of $A(X)$ is studied. Moreover, we answer five questions concerning the mapping $\Im _A$ raised in [J. Sack, S. Watson, $C$ and $C^*$ among intermediate rings, Topology Proc. 43 (2014), 69–82].
LA - eng
KW - $z$-ideal; ${\mathcal {Z}}_A$-ideal; $\Im _A$-ideal; $z$-filter; ${\mathcal {Z}}_A$-filter; $\Im _A$-filter; intermediate ring
UR - http://eudml.org/doc/294777
ER -
References
top- Aliabad A. R., Parsinia M., Remarks on subrings of of the form , Quaest. Math. 40 (2017), no. 1, 63–73. MR3620980
- Aliabad A. R., Parsinia M., -ideals and -ideals in subrings of , to appear in Iranian J. Math. Sci. Inform.
- Byun H. L., Watson S., 10.1016/0166-8641(91)90057-S, Topology Appl. 40 (1991), no. 1, 45–62. Zbl0732.54016MR1114090DOI10.1016/0166-8641(91)90057-S
- Domínguez J. M., Gómez Pérez J., Intersections of maximal ideals in algebras between and , Iberoamerican Conf. on Topology and Its Applications, Morelia, 1997, Topology Appl. 98 (1999), no. 1–3, 149–165. MR1719998
- Gillman L., Jerison M., Rings of Continuous Functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, New York, 1960. Zbl0327.46040MR0116199
- Mason G., 10.1016/0021-8693(73)90024-0, J. Algebra 26 (1973), 280–297. MR0321915DOI10.1016/0021-8693(73)90024-0
- Murray W., Sack J., Watson S., -spaces and intermediate rings of continuous functions, Rocky Mountain J. Math. 47 (2017), no. 8, 2757–2775. MR3760317
- Panman P., Sack J., Watson S., Correspondence between ideals and z-filters for rings of continuous functions between and , Comment. Math. 52 (2012), no. 1, 11–20. MR2977710
- Parsinia M., Remarks on -subalgebras of , Comment. Math. Univ. Carolin. 57 (2016), no. 2, 261–270. MR3513449
- Parsinia M., Remarks on intermediate -rings of , Quaest. Math. (online 2017), 8 pages. MR3836415
- Plank D., 10.4064/fm-64-1-41-54, Fund. Math. 64 (1969), 41–54. MR0244953DOI10.4064/fm-64-1-41-54
- Redlin L., Watson S., Maximal ideals in subalgebras of , Proc. Amer. Math. Soc. 100 (1987), no. 4, 763–766. Zbl0622.54011MR0894451
- Sack J., Watson S., and among intermediate rings, Topology Proc. 43 (2014), 69–82. MR3080750
- Sack J., Watson S., Characterizing among intermediate -rings on , Topology Proc. 45 (2015), 301–313. MR3291114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.