Finite p -groups with exactly two nonlinear non-faithful irreducible characters

Yali Li; Xiaoyou Chen; Huimin Li

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 173-181
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of G and classify finite p -groups with exactly two nonlinear non-faithful irreducible characters.

How to cite

top

Li, Yali, Chen, Xiaoyou, and Li, Huimin. "Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters." Czechoslovak Mathematical Journal 69.1 (2019): 173-181. <http://eudml.org/doc/294788>.

@article{Li2019,
abstract = {Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.},
author = {Li, Yali, Chen, Xiaoyou, Li, Huimin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-group; nonlinear irreducible character; non-faithful character},
language = {eng},
number = {1},
pages = {173-181},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters},
url = {http://eudml.org/doc/294788},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Li, Yali
AU - Chen, Xiaoyou
AU - Li, Huimin
TI - Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 173
EP - 181
AB - Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.
LA - eng
KW - $p$-group; nonlinear irreducible character; non-faithful character
UR - http://eudml.org/doc/294788
ER -

References

top
  1. Berkovich, Ya. G., Zhmud', E. M., Characters of Finite Groups. Part 2, Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). (1998) Zbl0934.20009MR1486039
  2. Fernández-Alcober, G. A., Moretó, A., 10.1090/S0002-9947-01-02685-X, Trans. Am. Math. Soc. 353 (2001), 2171-2192. (2001) Zbl0968.20005MR1814066DOI10.1090/S0002-9947-01-02685-X
  3. The GAP Group, GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org. (2016) 
  4. Iranmanesh, A., Saeidi, A., Finite groups with a unique nonlinear nonfaithful irreducible character, Arch. Math., Brno 47 (2011), 91-98. (2011) Zbl1249.20009MR2813535
  5. Isaacs, I. M., 10.1090/chel/359, Pure and Applied Mathematics 69, Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423DOI10.1090/chel/359
  6. Saeidi, A., 10.2478/s11533-013-0327-4, Cent. Eur. J. Math. 12 (2014), 79-83. (2014) Zbl1287.20013MR3121823DOI10.2478/s11533-013-0327-4
  7. Seitz, G. M., 10.2307/2035551, Proc. Am. Math. Soc. 19 (1968), 459-461. (1968) Zbl0244.20010MR0222160DOI10.2307/2035551
  8. Wang, H., Chen, X., Zeng, J., 10.1016/S0252-9602(12)60112-X, Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. (2012) Zbl1274.20007MR2927433DOI10.1016/S0252-9602(12)60112-X
  9. Zhang, G. X., Finite groups with exactly two nonlinear irreducible characters, Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. (1996) Zbl0856.20008MR1397112

NotesEmbed ?

top

You must be logged in to post comments.