Finite p -groups with exactly two nonlinear non-faithful irreducible characters

Yali Li; Xiaoyou Chen; Huimin Li

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 173-181
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of G and classify finite p -groups with exactly two nonlinear non-faithful irreducible characters.

How to cite

top

Li, Yali, Chen, Xiaoyou, and Li, Huimin. "Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters." Czechoslovak Mathematical Journal 69.1 (2019): 173-181. <http://eudml.org/doc/294788>.

@article{Li2019,
abstract = {Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.},
author = {Li, Yali, Chen, Xiaoyou, Li, Huimin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-group; nonlinear irreducible character; non-faithful character},
language = {eng},
number = {1},
pages = {173-181},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters},
url = {http://eudml.org/doc/294788},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Li, Yali
AU - Chen, Xiaoyou
AU - Li, Huimin
TI - Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 173
EP - 181
AB - Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.
LA - eng
KW - $p$-group; nonlinear irreducible character; non-faithful character
UR - http://eudml.org/doc/294788
ER -

References

top
  1. Berkovich, Ya. G., Zhmud', E. M., Characters of Finite Groups. Part 2, Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). (1998) Zbl0934.20009MR1486039
  2. Fernández-Alcober, G. A., Moretó, A., 10.1090/S0002-9947-01-02685-X, Trans. Am. Math. Soc. 353 (2001), 2171-2192. (2001) Zbl0968.20005MR1814066DOI10.1090/S0002-9947-01-02685-X
  3. The GAP Group, GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org. (2016) 
  4. Iranmanesh, A., Saeidi, A., Finite groups with a unique nonlinear nonfaithful irreducible character, Arch. Math., Brno 47 (2011), 91-98. (2011) Zbl1249.20009MR2813535
  5. Isaacs, I. M., 10.1090/chel/359, Pure and Applied Mathematics 69, Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423DOI10.1090/chel/359
  6. Saeidi, A., 10.2478/s11533-013-0327-4, Cent. Eur. J. Math. 12 (2014), 79-83. (2014) Zbl1287.20013MR3121823DOI10.2478/s11533-013-0327-4
  7. Seitz, G. M., 10.2307/2035551, Proc. Am. Math. Soc. 19 (1968), 459-461. (1968) Zbl0244.20010MR0222160DOI10.2307/2035551
  8. Wang, H., Chen, X., Zeng, J., 10.1016/S0252-9602(12)60112-X, Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. (2012) Zbl1274.20007MR2927433DOI10.1016/S0252-9602(12)60112-X
  9. Zhang, G. X., Finite groups with exactly two nonlinear irreducible characters, Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. (1996) Zbl0856.20008MR1397112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.