Finite -groups with exactly two nonlinear non-faithful irreducible characters
Yali Li; Xiaoyou Chen; Huimin Li
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 173-181
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Berkovich, Ya. G., Zhmud', E. M., Characters of Finite Groups. Part 2, Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). (1998) Zbl0934.20009MR1486039
- Fernández-Alcober, G. A., Moretó, A., 10.1090/S0002-9947-01-02685-X, Trans. Am. Math. Soc. 353 (2001), 2171-2192. (2001) Zbl0968.20005MR1814066DOI10.1090/S0002-9947-01-02685-X
- The GAP Group, GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org. (2016)
- Iranmanesh, A., Saeidi, A., Finite groups with a unique nonlinear nonfaithful irreducible character, Arch. Math., Brno 47 (2011), 91-98. (2011) Zbl1249.20009MR2813535
- Isaacs, I. M., 10.1090/chel/359, Pure and Applied Mathematics 69, Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423DOI10.1090/chel/359
- Saeidi, A., 10.2478/s11533-013-0327-4, Cent. Eur. J. Math. 12 (2014), 79-83. (2014) Zbl1287.20013MR3121823DOI10.2478/s11533-013-0327-4
- Seitz, G. M., 10.2307/2035551, Proc. Am. Math. Soc. 19 (1968), 459-461. (1968) Zbl0244.20010MR0222160DOI10.2307/2035551
- Wang, H., Chen, X., Zeng, J., 10.1016/S0252-9602(12)60112-X, Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. (2012) Zbl1274.20007MR2927433DOI10.1016/S0252-9602(12)60112-X
- Zhang, G. X., Finite groups with exactly two nonlinear irreducible characters, Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. (1996) Zbl0856.20008MR1397112