-biminimal maps between Riemannian manifolds
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 893-905
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Yan, and Liu, Ximin. "$f$-biminimal maps between Riemannian manifolds." Czechoslovak Mathematical Journal 69.4 (2019): 893-905. <http://eudml.org/doc/294795>.
@article{Zhao2019,
abstract = {We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb \{R\}^\{n\}\times \mathbb \{S\}^\{1\}(a)$ and derive two rigidity theorems.},
author = {Zhao, Yan, Liu, Ximin},
journal = {Czechoslovak Mathematical Journal},
keywords = {variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector},
language = {eng},
number = {4},
pages = {893-905},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$f$-biminimal maps between Riemannian manifolds},
url = {http://eudml.org/doc/294795},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Zhao, Yan
AU - Liu, Ximin
TI - $f$-biminimal maps between Riemannian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 893
EP - 905
AB - We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems.
LA - eng
KW - variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector
UR - http://eudml.org/doc/294795
ER -
References
top- Balmuş, A., Montaldo, S., Oniciuc, C., 10.1007/s11856-008-1064-4, Isr. J. Math. 168 (2008), 201-220. (2008) Zbl1172.58004MR2448058DOI10.1007/s11856-008-1064-4
- Bayle, V., Propriétés de concavité du profil isopérimétrique et applications, These de Doctorat, Université Joseph-Fourier, Grenoble French (2003). (2003)
- Caddeo, R., Montaldo, S., Oniciuc, C., 10.1142/S0129167X01001027, Int. J. Math. 12 (2001), 867-876. (2001) Zbl1111.53302MR1863283DOI10.1142/S0129167X01001027
- Caddeo, R., Montaldo, S., Oniciuc, C., 10.1007/BF02764073, Isr. J. Math. 130 (2002), 109-123. (2002) Zbl1038.58011MR1919374DOI10.1007/BF02764073
- Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188. (1991) Zbl0749.53037MR1143504
- Chen, B.-Y., Ishikawa, S., 10.2206/kyushujm.52.167, Kyushu J. Math. 52 (1998), 167-185. (1998) Zbl0892.53012MR1609044DOI10.2206/kyushujm.52.167
- Cheng, X., Mejia, T., Zhou, D., 10.2140/pjm.2014.271.347, Pac. J. Math. 271 (2014), 347-367. (2014) Zbl1322.58020MR3267533DOI10.2140/pjm.2014.271.347
- Cheng, X., Mejia, T., Zhou, D., 10.1090/S0002-9947-2015-06207-2, Trans. Am. Math. Soc. 367 (2015), 4041-4059. (2015) Zbl1318.53061MR3324919DOI10.1090/S0002-9947-2015-06207-2
- Dimitrić, I., Submanifolds of with harmonic mean curvature vector, Bull. Inst. Math., Acad. Sin. 20 (1992), 53-65. (1992) Zbl0778.53046MR1166218
- J. Eells, Jr., J. H. Sampson, 10.2307/2373037, Am. J. Math. 86 (1964), 109-160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
- Fetcu, D., Oniciuc, C., Rosenberg, H., 10.1007/s12220-012-9323-3, J. Geom. Anal. 23 (2013), 2158-2176. (2013) Zbl1281.58008MR3107694DOI10.1007/s12220-012-9323-3
- Hasanis, T., Vlachos, T., 10.1002/mana.19951720112, Math. Nachr. 172 (1995), 145-169. (1995) Zbl0839.53007MR1330627DOI10.1002/mana.19951720112
- Jiang, G., 10.1285/i15900932v28n1supplp209, Chin. Ann. Math., Ser. A 7 (1986), 389-402 Chinese. (1986) Zbl0628.58008MR0886529DOI10.1285/i15900932v28n1supplp209
- Jiang, G., Some nonexistence theorems on 2-harmonic and isometric immersions in Euclidean space, Chin. Ann. Math., Ser. A 8 (1987), 377-383 Chinese. (1987) Zbl0637.53071MR0924896
- Li, X. X., Li, J. T., The rigidity and stability of complete -minimal hypersurfaces in , (to appear) in Proc. Am. Math. Soc. MR3600797
- Liu, G., 10.4310/CAG.2013.v21.n5.a7, Commun. Anal. Geom. 21 (2013), 1061-1079. (2013) Zbl1301.53057MR3152972DOI10.4310/CAG.2013.v21.n5.a7
- Lu, W. J., 10.1007/s11425-015-4997-1, Sci. China, Math. 58 (2015), 1483-1498. (2015) Zbl1334.53063MR3353985DOI10.1007/s11425-015-4997-1
- Ou, Y.-L., Wang, Z.-P., 10.1016/j.geomphys.2011.04.008, J. Geom. Phys. 61 (2011), 1845-1853. (2011) Zbl1227.58004MR2822453DOI10.1016/j.geomphys.2011.04.008
- Ouakkas, S., Nasri, R., Djaa, M., On the -harmonic and -biharmonic maps, JP J. Geom. Topol. 10 (2010), 11-27. (2010) Zbl1209.58014MR2677559
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.