f -biminimal maps between Riemannian manifolds

Yan Zhao; Ximin Liu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 893-905
  • ISSN: 0011-4642

Abstract

top
We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.

How to cite

top

Zhao, Yan, and Liu, Ximin. "$f$-biminimal maps between Riemannian manifolds." Czechoslovak Mathematical Journal 69.4 (2019): 893-905. <http://eudml.org/doc/294795>.

@article{Zhao2019,
abstract = {We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb \{R\}^\{n\}\times \mathbb \{S\}^\{1\}(a)$ and derive two rigidity theorems.},
author = {Zhao, Yan, Liu, Ximin},
journal = {Czechoslovak Mathematical Journal},
keywords = {variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector},
language = {eng},
number = {4},
pages = {893-905},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$f$-biminimal maps between Riemannian manifolds},
url = {http://eudml.org/doc/294795},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Zhao, Yan
AU - Liu, Ximin
TI - $f$-biminimal maps between Riemannian manifolds
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 893
EP - 905
AB - We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems.
LA - eng
KW - variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector
UR - http://eudml.org/doc/294795
ER -

References

top
  1. Balmuş, A., Montaldo, S., Oniciuc, C., 10.1007/s11856-008-1064-4, Isr. J. Math. 168 (2008), 201-220. (2008) Zbl1172.58004MR2448058DOI10.1007/s11856-008-1064-4
  2. Bayle, V., Propriétés de concavité du profil isopérimétrique et applications, These de Doctorat, Université Joseph-Fourier, Grenoble French (2003). (2003) 
  3. Caddeo, R., Montaldo, S., Oniciuc, C., 10.1142/S0129167X01001027, Int. J. Math. 12 (2001), 867-876. (2001) Zbl1111.53302MR1863283DOI10.1142/S0129167X01001027
  4. Caddeo, R., Montaldo, S., Oniciuc, C., 10.1007/BF02764073, Isr. J. Math. 130 (2002), 109-123. (2002) Zbl1038.58011MR1919374DOI10.1007/BF02764073
  5. Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188. (1991) Zbl0749.53037MR1143504
  6. Chen, B.-Y., Ishikawa, S., 10.2206/kyushujm.52.167, Kyushu J. Math. 52 (1998), 167-185. (1998) Zbl0892.53012MR1609044DOI10.2206/kyushujm.52.167
  7. Cheng, X., Mejia, T., Zhou, D., 10.2140/pjm.2014.271.347, Pac. J. Math. 271 (2014), 347-367. (2014) Zbl1322.58020MR3267533DOI10.2140/pjm.2014.271.347
  8. Cheng, X., Mejia, T., Zhou, D., 10.1090/S0002-9947-2015-06207-2, Trans. Am. Math. Soc. 367 (2015), 4041-4059. (2015) Zbl1318.53061MR3324919DOI10.1090/S0002-9947-2015-06207-2
  9. Dimitrić, I., Submanifolds of E m with harmonic mean curvature vector, Bull. Inst. Math., Acad. Sin. 20 (1992), 53-65. (1992) Zbl0778.53046MR1166218
  10. J. Eells, Jr., J. H. Sampson, 10.2307/2373037, Am. J. Math. 86 (1964), 109-160. (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
  11. Fetcu, D., Oniciuc, C., Rosenberg, H., 10.1007/s12220-012-9323-3, J. Geom. Anal. 23 (2013), 2158-2176. (2013) Zbl1281.58008MR3107694DOI10.1007/s12220-012-9323-3
  12. Hasanis, T., Vlachos, T., 10.1002/mana.19951720112, Math. Nachr. 172 (1995), 145-169. (1995) Zbl0839.53007MR1330627DOI10.1002/mana.19951720112
  13. Jiang, G., 10.1285/i15900932v28n1supplp209, Chin. Ann. Math., Ser. A 7 (1986), 389-402 Chinese. (1986) Zbl0628.58008MR0886529DOI10.1285/i15900932v28n1supplp209
  14. Jiang, G., Some nonexistence theorems on 2-harmonic and isometric immersions in Euclidean space, Chin. Ann. Math., Ser. A 8 (1987), 377-383 Chinese. (1987) Zbl0637.53071MR0924896
  15. Li, X. X., Li, J. T., The rigidity and stability of complete f -minimal hypersurfaces in × 𝕊 1 ( a ) , (to appear) in Proc. Am. Math. Soc. MR3600797
  16. Liu, G., 10.4310/CAG.2013.v21.n5.a7, Commun. Anal. Geom. 21 (2013), 1061-1079. (2013) Zbl1301.53057MR3152972DOI10.4310/CAG.2013.v21.n5.a7
  17. Lu, W. J., 10.1007/s11425-015-4997-1, Sci. China, Math. 58 (2015), 1483-1498. (2015) Zbl1334.53063MR3353985DOI10.1007/s11425-015-4997-1
  18. Ou, Y.-L., Wang, Z.-P., 10.1016/j.geomphys.2011.04.008, J. Geom. Phys. 61 (2011), 1845-1853. (2011) Zbl1227.58004MR2822453DOI10.1016/j.geomphys.2011.04.008
  19. Ouakkas, S., Nasri, R., Djaa, M., On the f -harmonic and f -biharmonic maps, JP J. Geom. Topol. 10 (2010), 11-27. (2010) Zbl1209.58014MR2677559

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.