Weak normal and quasinormal families of holomorphic curves

Si Duc Quang; Dau Hong Quan

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 3, page 153-163
  • ISSN: 0044-8753

Abstract

top
In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.

How to cite

top

Quang, Si Duc, and Quan, Dau Hong. "Weak normal and quasinormal families of holomorphic curves." Archivum Mathematicum 054.3 (2018): 153-163. <http://eudml.org/doc/294801>.

@article{Quang2018,
abstract = {In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in $\mathbb \{C\}$ into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.},
author = {Quang, Si Duc, Quan, Dau Hong},
journal = {Archivum Mathematicum},
keywords = {weak normal; quasinormal family; holomorphic curve; meromorphic mappings},
language = {eng},
number = {3},
pages = {153-163},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Weak normal and quasinormal families of holomorphic curves},
url = {http://eudml.org/doc/294801},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Quang, Si Duc
AU - Quan, Dau Hong
TI - Weak normal and quasinormal families of holomorphic curves
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 153
EP - 163
AB - In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in $\mathbb {C}$ into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
LA - eng
KW - weak normal; quasinormal family; holomorphic curve; meromorphic mappings
UR - http://eudml.org/doc/294801
ER -

References

top
  1. Aladro, G., Krantz, S.G., 10.1016/0022-247X(91)90356-5, J. Math. Anal. Appl. 161 (1991), 1–8. (1991) MR1127544DOI10.1016/0022-247X(91)90356-5
  2. Bar, R., Grahl, J., Nevo, S., Differential inequalities and quasinormal families, Anal. Math. Phys. 4 (2004), 66–71. (2004) MR3215192
  3. Chuang, C.T., Normal families of meromorphic functions, World Scientific Publishing Co. Pte. Ltd., 1993. (1993) MR1249270
  4. Dethloff, G., Thai, D.D., Trang, P.N.T., 10.1215/00277630-2863882, Nagoya Math. J. 217 (2015), 23–59. (2015) MR3343838DOI10.1215/00277630-2863882
  5. Fujimoto, H., 10.1017/S0027763000024570, Nagoya Math. J. 54 (1974), 21–51. (1974) MR0367301DOI10.1017/S0027763000024570
  6. Mai, P.N., Thai, D.D., Trang, P.N.T., 10.1017/S002776300000920X, Nagoya Math. J. 180 (2005), 91–110. (2005) MR2186670DOI10.1017/S002776300000920X
  7. Nevo, S., Pang, X., Zalcman, L., 10.1007/s11854-007-0001-5, J. d'Analyse Math. 101 (2007), 1–23. (2007) MR2346538DOI10.1007/s11854-007-0001-5
  8. Noguchi, J., Ochiai, T., 10.1090/mmono/080, Transl. Math. Monogr. (1990). (1990) MR1084378DOI10.1090/mmono/080
  9. Noguchi, J., Winkelmann, J., 10.1007/s002090100327, Math. Z. 239 (2002), 593–610. (2002) MR1893854DOI10.1007/s002090100327
  10. Pang, X., Nevo, S., Zalcman, L., 10.4171/RMI/422, Rev. Mat. Iberoamericana 21 (2005), 249–262. (2005) MR2155021DOI10.4171/RMI/422
  11. Quang, S.D., 10.4064/ap104-3-5, Ann. Polon. Math. 104 (2012), 279–292. (2012) MR2914536DOI10.4064/ap104-3-5
  12. Quang, S.D., Tan, T.V., 10.4064/ap94-2-1, Ann. Polon. Math. 94 (2008), 97–110. (2008) MR2438852DOI10.4064/ap94-2-1
  13. Stoll, W., 10.1007/BF01117123, Math. Z. 84 (1964), 154–218. (1964) MR0165142DOI10.1007/BF01117123
  14. Thai, D.D., Trang, P.N.T., Huong, P.D., Families of normal maps in several complex variables and hyperbolicity of complex spaces, Complex Var. Elliptic Equ. 48 (2003), 469–482. (2003) MR1979525
  15. Zalcman, L., 10.1090/S0273-0979-98-00755-1, Bull. Amer. Math. Soc. 35 (1998), 215–230. (1998) MR1624862DOI10.1090/S0273-0979-98-00755-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.