Breaking points in the poset of conjugacy classes of subgroups of a finite group

Marius Tărnăuceanu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1081-1087
  • ISSN: 0011-4642

Abstract

top
We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion 2 -groups. A generalization of this property is also studied.

How to cite

top

Tărnăuceanu, Marius. "Breaking points in the poset of conjugacy classes of subgroups of a finite group." Czechoslovak Mathematical Journal 69.4 (2019): 1081-1087. <http://eudml.org/doc/294809>.

@article{Tărnăuceanu2019,
abstract = {We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.},
author = {Tărnăuceanu, Marius},
journal = {Czechoslovak Mathematical Journal},
keywords = {breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group},
language = {eng},
number = {4},
pages = {1081-1087},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Breaking points in the poset of conjugacy classes of subgroups of a finite group},
url = {http://eudml.org/doc/294809},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Tărnăuceanu, Marius
TI - Breaking points in the poset of conjugacy classes of subgroups of a finite group
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1081
EP - 1087
AB - We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.
LA - eng
KW - breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group
UR - http://eudml.org/doc/294809
ER -

References

top
  1. Breaz, S., Călugăreanu, G., 10.1017/s1446788700015548, J. Aust. Math. Soc. 78 (2005), 27-36. (2005) Zbl1080.20023MR2129487DOI10.1017/s1446788700015548
  2. Călugăreanu, G., Deaconescu, M., 10.1017/CBO9780511542770.012, Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. (2003) Zbl1062.20028MR2051518DOI10.1017/CBO9780511542770.012
  3. Chen, Y., Chen, G., 10.1016/j.crma.2014.04.009, C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. (2014) Zbl1303.20019MR3210124DOI10.1016/j.crma.2014.04.009
  4. Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
  5. Schmidt, R., 10.1515/9783110868647, De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462DOI10.1515/9783110868647
  6. Suzuki, M., 10.1090/S0002-9947-1951-0039717-3, Trans. Am. Math. Soc. 70 (1951), 345-371. (1951) Zbl0043.02502MR0039717DOI10.1090/S0002-9947-1951-0039717-3
  7. Suzuki, M., 10.1007/978-3-642-61804-8, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). (1982) Zbl0472.20001MR0648772DOI10.1007/978-3-642-61804-8
  8. Suzuki, M., 10.1007/978-3-642-86885-6_3, Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). (1986) Zbl0472.20001MR0501682DOI10.1007/978-3-642-86885-6_3
  9. Tărnăuceanu, M., 10.1016/j.crma.2010.06.016, C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. (2010) Zbl1205.20024MR2671150DOI10.1016/j.crma.2010.06.016
  10. Tărnăuceanu, M., Contributions to the Study of Subgroup Lattices, Matrix Rom, Bucharest (2016). (2016) Zbl1360.20002MR3496569

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.