Breaking points in the poset of conjugacy classes of subgroups of a finite group
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1081-1087
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTărnăuceanu, Marius. "Breaking points in the poset of conjugacy classes of subgroups of a finite group." Czechoslovak Mathematical Journal 69.4 (2019): 1081-1087. <http://eudml.org/doc/294809>.
@article{Tărnăuceanu2019,
abstract = {We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.},
author = {Tărnăuceanu, Marius},
journal = {Czechoslovak Mathematical Journal},
keywords = {breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group},
language = {eng},
number = {4},
pages = {1081-1087},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Breaking points in the poset of conjugacy classes of subgroups of a finite group},
url = {http://eudml.org/doc/294809},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Tărnăuceanu, Marius
TI - Breaking points in the poset of conjugacy classes of subgroups of a finite group
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1081
EP - 1087
AB - We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied.
LA - eng
KW - breaking point; poset of conjugacy classes of subgroups; interval; generalized quaternion $2$-group
UR - http://eudml.org/doc/294809
ER -
References
top- Breaz, S., Călugăreanu, G., 10.1017/s1446788700015548, J. Aust. Math. Soc. 78 (2005), 27-36. (2005) Zbl1080.20023MR2129487DOI10.1017/s1446788700015548
- Călugăreanu, G., Deaconescu, M., 10.1017/CBO9780511542770.012, Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. (2003) Zbl1062.20028MR2051518DOI10.1017/CBO9780511542770.012
- Chen, Y., Chen, G., 10.1016/j.crma.2014.04.009, C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. (2014) Zbl1303.20019MR3210124DOI10.1016/j.crma.2014.04.009
- Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
- Schmidt, R., 10.1515/9783110868647, De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462DOI10.1515/9783110868647
- Suzuki, M., 10.1090/S0002-9947-1951-0039717-3, Trans. Am. Math. Soc. 70 (1951), 345-371. (1951) Zbl0043.02502MR0039717DOI10.1090/S0002-9947-1951-0039717-3
- Suzuki, M., 10.1007/978-3-642-61804-8, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). (1982) Zbl0472.20001MR0648772DOI10.1007/978-3-642-61804-8
- Suzuki, M., 10.1007/978-3-642-86885-6_3, Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). (1986) Zbl0472.20001MR0501682DOI10.1007/978-3-642-86885-6_3
- Tărnăuceanu, M., 10.1016/j.crma.2010.06.016, C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. (2010) Zbl1205.20024MR2671150DOI10.1016/j.crma.2010.06.016
- Tărnăuceanu, M., Contributions to the Study of Subgroup Lattices, Matrix Rom, Bucharest (2016). (2016) Zbl1360.20002MR3496569
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.