Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis; Vassiliadis G. Vassiliadis

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 2, page 233-239
  • ISSN: 0010-2628

Abstract

top
Let ( M , d ) be a bounded countable metric space and c > 0 a constant, such that d ( x , y ) + d ( y , z ) - d ( x , z ) c , for any pairwise distinct points x , y , z of M . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .

How to cite

top

Mercourakis, Sophocles K., and Vassiliadis, Vassiliadis G.. "Isometric embeddings of a class of separable metric spaces into Banach spaces." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 233-239. <http://eudml.org/doc/294810>.

@article{Mercourakis2018,
abstract = {Let $(M,d)$ be a bounded countable metric space and $c>0$ a constant, such that $d(x,y)+d(y,z)-d(x,z)\ge c$, for any pairwise distinct points $x,y,z$ of $M$. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of $\ell _\infty $.},
author = {Mercourakis, Sophocles K., Vassiliadis, Vassiliadis G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {concave metric space; isometric embedding; separated set},
language = {eng},
number = {2},
pages = {233-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isometric embeddings of a class of separable metric spaces into Banach spaces},
url = {http://eudml.org/doc/294810},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Mercourakis, Sophocles K.
AU - Vassiliadis, Vassiliadis G.
TI - Isometric embeddings of a class of separable metric spaces into Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 233
EP - 239
AB - Let $(M,d)$ be a bounded countable metric space and $c>0$ a constant, such that $d(x,y)+d(y,z)-d(x,z)\ge c$, for any pairwise distinct points $x,y,z$ of $M$. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of $\ell _\infty $.
LA - eng
KW - concave metric space; isometric embedding; separated set
UR - http://eudml.org/doc/294810
ER -

References

top
  1. Braß P., On equilateral simplices in normed spaces, Beiträge Algebra Geom. 40 (1999), no. 2, 303–307. MR1720106
  2. Elton J., Odell E., 10.4064/cm-44-1-105-109, Colloq. Math. 44 (1981), no. 1, 105–109. MR0633103DOI10.4064/cm-44-1-105-109
  3. Glakousakis E., Mercourakis S., 10.1112/S002557931400028X, Mathematika 61 (2015), no. 3, 547–558. MR3415641DOI10.1112/S002557931400028X
  4. Kilbane J., On embeddings of finite subsets of l 2 , available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages. MR3767362
  5. Mercourakis S. K., Vassiliadis G., 10.1090/S0002-9939-2013-11746-6, Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212. MR3119196DOI10.1090/S0002-9939-2013-11746-6
  6. Ostrovskii M. I., Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces, De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013. MR3114782
  7. Partington J. R., 10.1112/blms/13.2.162, Bull. London Math. Soc. 13 (1981), no. 2, 162–166. MR0608103DOI10.1112/blms/13.2.162
  8. Swanepoel K. J., Equilateral sets in finite-dimensional normed spaces, Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237. MR2117069
  9. Swanepoel K. J., Villa R., 10.1090/S0002-9939-07-08916-2, Proc. Amer. Math. Soc. 136 (2008), no. 1, 127–131. MR2350397DOI10.1090/S0002-9939-07-08916-2
  10. Swanepoel K. J., Villa R., 10.1007/s00454-013-9523-z, Discrete Comput. Geom. 50 (2013) no. 2, 354–373. MR3090523DOI10.1007/s00454-013-9523-z
  11. Talagrand M., 10.1007/BF02761372, Israel J. Math. 40 (1981) no. 3–4, 324–330 (French. English summary). MR0654587DOI10.1007/BF02761372

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.