A dispersion inequality in the Hankel setting
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 227-241
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGhobber, Saifallah. "A dispersion inequality in the Hankel setting." Czechoslovak Mathematical Journal 68.1 (2018): 227-241. <http://eudml.org/doc/294811>.
@article{Ghobber2018,
abstract = {The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.},
author = {Ghobber, Saifallah},
journal = {Czechoslovak Mathematical Journal},
keywords = {time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles},
language = {eng},
number = {1},
pages = {227-241},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A dispersion inequality in the Hankel setting},
url = {http://eudml.org/doc/294811},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Ghobber, Saifallah
TI - A dispersion inequality in the Hankel setting
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 227
EP - 241
AB - The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
LA - eng
KW - time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
UR - http://eudml.org/doc/294811
ER -
References
top- Bowie, P. C., 10.1137/0502059, SIAM J. Math. Anal. 2 (1971), 601-606. (1971) Zbl0235.44002MR0304983DOI10.1137/0502059
- Czaja, W., Gigante, G., 10.1007/s00041-003-0017-x, J. Fourier Anal. Appl. 9 (2003), 321-339. (2003) Zbl1037.42031MR1999563DOI10.1007/s00041-003-0017-x
- Ghobber, S., 10.1016/j.jat.2014.10.008, J. Approx. Theory 189 (2015), 123-136. (2015) Zbl1303.42015MR3280675DOI10.1016/j.jat.2014.10.008
- Ghobber, S., Omri, S., 10.1080/10652469.2013.877009, Integral Transforms Spec. Funct. 25 (2014), 481-496. (2014) Zbl1293.42005MR3172059DOI10.1080/10652469.2013.877009
- Lamouchi, H., Omri, S., 10.1080/10652469.2015.1092439, Integral Transforms Spec. Funct. 27 (2016), 43-54. (2016) Zbl1334.42022MR3417389DOI10.1080/10652469.2015.1092439
- Levitan, B. M., Expansion in Fourier series and integrals with Bessel functions, Uspekhi Matem. Nauk (N.S.) 6 (1951), 102-143 Russian. (1951) Zbl0043.07002MR0049376
- Malinnikova, E., 10.1007/s00041-009-9114-9, J. Fourier Anal. Appl. 16 (2010), 983-1006. (2010) Zbl1210.42020MR2737766DOI10.1007/s00041-009-9114-9
- Shapiro, H. S., Uncertainty principles for basis in , Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005 CIRM.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.