Some results on -flat dimension of modules
Ramalingam Udhayakumar; Intan Muchtadi-Alamsyah; Chelliah Selvaraj
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 2, page 187-198
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topUdhayakumar, Ramalingam, Muchtadi-Alamsyah, Intan, and Selvaraj, Chelliah. "Some results on $G_C$-flat dimension of modules." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 187-198. <http://eudml.org/doc/294818>.
@article{Udhayakumar2019,
abstract = {In this paper, we study some properties of $G_C$-flat $R$-modules, where $C$ is a semidualizing module over a commutative ring $R$ and we investigate the relation between the $G_C$-yoke with the $C$-yoke of a module as well as the relation between the $G_C$-flat resolution and the flat resolution of a module over $GF$-closed rings. We also obtain a criterion for computing the $G_C$-flat dimension of modules.},
author = {Udhayakumar, Ramalingam, Muchtadi-Alamsyah, Intan, Selvaraj, Chelliah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$GF$-closed ring; $G_C$-flat module; $G_C$-flat dimension; semidualizing module},
language = {eng},
number = {2},
pages = {187-198},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on $G_C$-flat dimension of modules},
url = {http://eudml.org/doc/294818},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Udhayakumar, Ramalingam
AU - Muchtadi-Alamsyah, Intan
AU - Selvaraj, Chelliah
TI - Some results on $G_C$-flat dimension of modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 187
EP - 198
AB - In this paper, we study some properties of $G_C$-flat $R$-modules, where $C$ is a semidualizing module over a commutative ring $R$ and we investigate the relation between the $G_C$-yoke with the $C$-yoke of a module as well as the relation between the $G_C$-flat resolution and the flat resolution of a module over $GF$-closed rings. We also obtain a criterion for computing the $G_C$-flat dimension of modules.
LA - eng
KW - $GF$-closed ring; $G_C$-flat module; $G_C$-flat dimension; semidualizing module
UR - http://eudml.org/doc/294818
ER -
References
top- Bennis D., 10.1080/00927870802271862, Comm. Algebra 37 (2009), no. 3, 855–868. MR2503181DOI10.1080/00927870802271862
- Christensen L. W., 10.1007/BFb0103984, Lecture Notes in Mathematics, 1747, Springer, Berlin, 2000. MR1799866DOI10.1007/BFb0103984
- Christensen L. W., Frankild A., Holm H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), no. 1, 231–279. MR2236602DOI10.1016/j.jalgebra.2005.12.007
- Enochs E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. Zbl0952.13001MR1753146
- Enochs E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1–9. MR1248299
- Foxby H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267–284. MR0327752DOI10.7146/math.scand.a-11434
- Golod E. S., -dimension and generalized perfect ideals, Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165 (1984), 62–66 (Russian). MR0752933
- Holm H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), no. 1–3, 167–193. MR2038564DOI10.1016/j.jpaa.2003.11.007
- Holm H., Jørgensen P., 10.1016/j.jpaa.2005.07.010, J. Pure. Appl. Algebra 205 (2006), no. 2, 423–445. MR2203625DOI10.1016/j.jpaa.2005.07.010
- Holm H., White D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808. MR2413065DOI10.1215/kjm/1250692289
- Huang C., Huang Z., 10.1016/j.jalgebra.2010.10.010, J. Algebra 324 (2010), no. 12, 3408–3419. MR2735390DOI10.1016/j.jalgebra.2010.10.010
- Liu Z., Yang X., 10.1017/S1446788709000093, J. Aust. Math. Soc. 87 (2009), no. 3, 395–407. MR2576573DOI10.1017/S1446788709000093
- Rotman J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, New York, 1979. Zbl1157.18001MR0538169
- Sather-Wagstaff S., Sharif T., White D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 (2011), no. 3, 403–428. MR2785915DOI10.1007/s10468-009-9195-9
- Selvaraj C., Udhayakumar R., Umamaheswaran A., 10.1142/S179355711450051X, Asian-Eur. J. Math. 7 (2014), no. 3, 1450051, 13 pages. MR3257526DOI10.1142/S179355711450051X
- Vasconcelos W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1974. MR0498530
- White D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra 2 (2010), no. 1, 111–137. MR2607104DOI10.1216/JCA-2010-2-1-111
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.